Skip to main content

Role of IL-22 in Microbial Host Defense

  • Chapter
  • First Online:
Book cover Interleukin-10 in Health and Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 380))

Abstract

Interleukin (IL)-22 is a member of the IL-10 family of cytokines, which, besides IL-10, contains seven additional cytokines. Although the founding member IL-10 is an important immunoregulatory cytokine that represses both innate and adaptive immunity, the other family members preferentially target epithelial cells and enhance innate host defense mechanisms against various pathogens such as bacteria, yeast, and viruses. Based on their functions, the IL-10 family can be further divided into three subgroups, IL-10 itself, the IL-20 subfamily, and the IFNλ subfamily. IL-22 is the best-studied member of the IL-20 subfamily, and exemplifies the diverse biological effects of this subfamily. IL-22 elicits various innate immune responses from epithelial cells and is essential for host defense against several invading pathogens, including Citrobacter rodentium and Klebsiella pneumonia. IL-22 also protects tissue integrity and maintains the mucosal homeostasis. On the other hand, IL-22 is a proinflammatory cytokine with the capacity to amplify inflammatory responses, which might result in tissue damage, e.g., the IL-22-dependent necrosis of the small intestine during Toxoplasma gondii infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aujla SJ, Chan YR et al (2008) IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 14(3):275–281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Basu R, O’Quinn DB et al (2012) Th22 Cells Are an Important Source of IL-22 for Host Protection against Enteropathogenic Bacteria. Immunity 37(6):1061–1075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bird L (2012) Mucosal immunology: IL-22 keeps commensals in their place. Nat Rev Immunol

    Google Scholar 

  • Bliss SK, Butcher BA, Denkers EY (2000) Rapid recruitment of neutrophils containing prestored IL-12 during microbial infection. J Immunol 165(8):4515–4521

    CAS  PubMed  Google Scholar 

  • Blumberg H, Conklin D et al (2001) Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 104(1):9–19

    CAS  PubMed  Google Scholar 

  • Boniface K, Bernard F-X et al (2005) IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol 174(6):3695–3702

    CAS  PubMed  Google Scholar 

  • Boniface K, Guignouard E et al (2007) A role for T cell-derived interleukin 22 in psoriatic skin inflammation. Clin Exp Immunol 150(3):407–415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brand S, Beigel F et al (2006) IL-22 is increased in active Crohn’s disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointest Liver Physiol 290(4):G827–G838

    CAS  PubMed  Google Scholar 

  • Brand S, Dambacher J, Beigel F, Zitzmann K, Heeg MH, Weiss TS, Prüfer T, Olszak T, Steib CJ, Storr M, Göke B, Diepolder H, Bilzer M, Thasler WE, Auernhammer CJ (2007) IL-22-mediated liver cell regeneration is abrogated by SOCS-1/3 overexpression in vitro. Am J Physiol Gastrointest Liver Physiol 292(4):G1019–G1028

    CAS  PubMed  Google Scholar 

  • Broadhurst MJ, Leung JM et al (2010) IL-22 + CD4 + T cells are associated with therapeutic trichuris trichiura infection in an ulcerative colitis patient. Sci Transl Med 2(60):60–88

    Google Scholar 

  • Burke JM, Roberts CW, Hunter CA, Murray M, Alexander J (1994) Temporal differences in the expression of mRNA for IL-10 and IFN-gamma in the brains and spleens of C57BL/10 mice infected with Toxoplasma gondii. Parasite Immunol 16(6):305–314

    CAS  PubMed  Google Scholar 

  • Candolfi E, Hunter CA, Remington JS (1995) Roles of gamma interferon and other cytokines in suppression of the spleen cell proliferative response to concanavalin A and toxoplasma antigen during acute toxoplasmosis. Infect Immun 63(3):751–756

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cella M, Fuchs A et al (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457(7230):722–725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung Y, Yang X et al (2006) Expression and regulation of IL-22 in the IL-17-producing CD4 + T lymphocytes. Cell Res 16(11):902–907

    CAS  PubMed  Google Scholar 

  • Conti HR, Shen F et al (2009) Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 206(2):299–311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz A, Khader SA, Torrado E, Fraga A, Pearl JE, Pedrosa J, Cooper AM, Castro AG (2006) Cutting edge: IFN-gamma regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection. J Immunol 177(3):1416–1420

    CAS  PubMed  Google Scholar 

  • Cupedo T, Crellin NK et al (2009) Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC + CD127 + natural killer-like cells. Nat Immunol 10(1):66–74

    CAS  PubMed  Google Scholar 

  • Dambacher J, Beigel F, Zitzmann K, Heeg MH, Göke B, Diepolder HM, Auernhammer CJ, Brand S (2008) The role of interleukin-22 in hepatitis C virus infection. Cytokine 41(3):209–216

    CAS  PubMed  Google Scholar 

  • de Beaucoudrey L, Samarina A et al (2010) Revisiting human IL-12Rbeta1 deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore) 89(6):381–402

    Google Scholar 

  • De Luca A, Zelante T et al (2010) IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol 3(4):361–373

    PubMed  Google Scholar 

  • Dudakov JA, Hanash AM et al (2012) Interleukin-22 drives endogenous thymic regeneration in mice. Science 336(6077):91–95

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duhen T, Geiger R et al (2009) Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol 10(8):857–863

    CAS  PubMed  Google Scholar 

  • Dumoutier L, Leemans C, Lejeune D, Kotenko SV, Renauld JC (2001) Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 167(7):3545–3549

    CAS  PubMed  Google Scholar 

  • Dumoutier L, Lejeune D et al (2003) Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3. Biochem J 370(Pt 2):391–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dumoutier L, Louahed J et al (2000a) Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol 164(4):1814–1819

    CAS  PubMed  Google Scholar 

  • Dumoutier L, Van Roost E et al (2000b) IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes. Genes Immun 1(8):488–494

    CAS  PubMed  Google Scholar 

  • Eberl G, Marmon S et al (2004) An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 5(1):64–73

    CAS  PubMed  Google Scholar 

  • Eyerich K, Foerster S et al (2008) Patients with chronic mucocutaneous candidiasis exhibit reduced production of Th17-associated cytokines IL-17 and IL-22. J Invest Dermatol 128(11):2640–2645

    CAS  PubMed  Google Scholar 

  • Eyerich S, Eyerich K et al (2009) Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Investig 119(12):3573–3585

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng D, Park O et al (2012) Interleukin-22 ameliorates cerulein-induced pancreatitis in mice by inhibiting the autophagic pathway. Int J Biol Sci 8(2):249–257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fiorentino DF, Bond MW, Mosmann TR (1989) Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 170(6):2081–2095

    CAS  PubMed  Google Scholar 

  • Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A (1991a) IL-10 inhibits cytokine production by activated macrophages. J Immunol 147:11

    Google Scholar 

  • Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, O’Garra A (1991b) IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol 146(10):3444–3451

    CAS  PubMed  Google Scholar 

  • Foster RG, Golden-Mason L, Rutebemberwa A, Rosen HR (2012) Interleukin (IL)-17/IL-22-producing T cells enriched within the liver of patients with chronic hepatitis C viral (HCV) infection. Dig Dis Sci 57(2):381–389

    CAS  PubMed  Google Scholar 

  • Fox BA, Sheppard PO, O’Hara PJ (2009) The role of genomic data in the discovery, annotation and evolutionary interpretation of the interferon-lambda family. PLoS ONE 4(3):e4933

    PubMed Central  PubMed  Google Scholar 

  • Franke A, Balschun T, Karlsen TH, Sventoraityte J, Nikolaus S, Mayr G, Domingues FS, Albrecht M, Nothnagel M, Ellinghaus D, Sina C, Onnie CM, Weersma RK, Stokkers PC, Wijmenga C, Gazouli M, Strachan D, McArdle WL, Vermeire S, Rutgeerts P, Rosenstiel P, Krawczak M, Vatn MH, IBSEN study group, Mathew CG, Schreiber S (2008) Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genent 40(11):1319–1323

    Google Scholar 

  • Fu Y, Chaplin D (1999) Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 17:399–433

    CAS  PubMed  Google Scholar 

  • Gad HH, Dellgren C, Hamming OJ, Vends S, Paludan SR, Hartmann R (2009) Interferon-lambda is functionally an interferon but structurally related to the interleukin-10 family. J Biol Chem 284(31):20869–20875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gazzinelli RT, Amichay D, Sharton-Kersten T, Grunwald E, Farber JM, Sher A (1996) Role of macrophage-derived cytokines in the induction and regulation of cell-mediated immunity to Toxoplasma gondii. Curr Top Microbiol Immunol 219:127–139

    CAS  PubMed  Google Scholar 

  • Gazzinelli RT, Oswald IP, James SL, Sher A (1992) IL-10 inhibits parasite killing and nitrogen oxide production by IFN-gamma-activated macrophages. J Immunol 148(6):1792–1796

    CAS  PubMed  Google Scholar 

  • Gazzinelli RT, Wysocka M, Hayashi S, Denkers EY, Hieny S, Caspar P, Trinchieri G, Sher A (1994) Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii. J Immunol 153(6):2533–2543

    CAS  PubMed  Google Scholar 

  • Geboes L, Dumoutier L et al (2009) Proinflammatory role of the Th17 cytokine interleukin-22 in collagen-induced arthritis in C57BL/6 mice. Arthritis Rheum 60(2):390–395

    CAS  PubMed  Google Scholar 

  • Gessner MA, Werner JL et al (2012) Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus. Infect Immun 80(1):410–417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grunvald E, Chiaramonte M, Hieny S, Wysocka M, Trinchieri G, Vogel SN, Gazzinelli RT, Sher A (1996) Biochemical characterization and protein kinase C dependency of monokine-inducing activities of Toxoplasma gondii. Infect Immun 64(6):2010–2018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gurney AL (2004) IL-22, a Th1 cytokine that targets the pancreas and select other peripheral tissues. Int Immunopharmacol 4(5):669–677

    CAS  PubMed  Google Scholar 

  • He M, Liang P (2010) IL-24 transgenic mice: in vivo evidence of overlapping functions for IL-20, IL-22, and IL-24 in the epidermis. J Immunol 184(4):1793–1798

    CAS  PubMed  Google Scholar 

  • Ho AS, Liu Y, Khan TA, Hsu DH, Bazan JF, Moore KW (1993) A receptor for interleukin 10 is related to interferon receptors. Proc Natl Acad Sci USA 90(23):11267–11271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunter CA, Abrams JS, Beaman MH, Remington JS (1993) Cytokine mRNA in the central nervous system of SCID mice infected with Toxoplasma gondii: importance of T-cell-independent regulation of resistance to T. gondii. Infect Immun 61(10):4038–4044

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeuchi H, Kuroiwa T et al (2005) Expression of interleukin-22 in rheumatoid arthritis: potential role as a proinflammatory cytokine. Arthritis Rheum 52(4):1037–1046

    CAS  PubMed  Google Scholar 

  • Ivanov II, Atarashi K et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(3):485–498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jankovic D, Kullberg MC, Feng CG, Goldszmid RS, Collazo CM, Wilson M, Wynn TA, Kamanaka M, Flavell RA, Sher A (2007) Conventional T-bet(+)Foxp3(-) Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. J Exp Med 204(2):273–283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kagami S, Rizzo HL et al (2010) IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J Immunol 185(9):5453–5462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kang YH, Seigel B, Bengsch B, Fleming VM, Billerbeck E, Simmons R, Walker L, Willberg CB, Barnes EJ, Bhagwanani A, Oo YH, Blum HE, Adams DH, Thimme R, Klenerman P (2012) CD161(+)CD4(+) T cells are enriched in the liver during chronic hepatitis and associated with co-secretion of IL-22 and IFN-γ. Front Immunol 3

    Google Scholar 

  • Kapessidou P, Poulin L et al (2008) Interleukin-22 deficiency accelerates the rejection of full major histocompatibility complex-disparate heart allografts. Transpl Proc 40(5):1593–1597

    CAS  Google Scholar 

  • Khan IA, Matsuura T, Kasper LH (1995) IL-10 mediates immunosuppression following primary infection with Toxoplasma gondii in mice. Parasite Immunol 17(4):185–195

    CAS  PubMed  Google Scholar 

  • Khan IA, Schwartzman JD, Matsuura T, Kasper LH (1997) A dichotomous role for nitric oxide during acute Toxoplasma gondii infection in mice. Proc Natl Acad Sci USA 94(25):13955–13960

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim CJ, Nazli A et al (2012) A role for mucosal IL-22 production and Th22 cells in HIV-associated mucosal immunopathogenesis. Mucosal Immunol 5(6):670–680

    CAS  PubMed  Google Scholar 

  • Kim EY, Chi HH, Bouziane M, Gaur A, Moudgil KD (2008) Regulation of autoimmune arthritis by the pro-inflammatory cytokine interferon-gamma. Clin Immunol 127(1):98–106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kinnebrew MA, Buffie CG et al (2012) Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36:276–287

    Google Scholar 

  • Kisand K, Boe Wolff AS et al (2010) Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med 207(2):299–308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klatt NR, Estes JD et al (2012) Loss of mucosal CD103 + DCs and IL-17 + and IL-22 + lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol 5(6):646–657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, Langer JA, Sheikh F, Dickensheets H, Donnelly RP (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4(1):69–77

    CAS  PubMed  Google Scholar 

  • Kotenko SV, Izotova LS et al (2001a) Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. J Biol Chem 276(4):2725–2732

    CAS  PubMed  Google Scholar 

  • Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP, Pestka S (2001b) Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol 166(12):7096–7103

    CAS  PubMed  Google Scholar 

  • Kranich J, Maslowski KM et al (2011) Commensal flora and the regulation of inflammatory and autoimmune responses. Semin Immunol 23(2):139–145

    CAS  PubMed  Google Scholar 

  • Kudva A, Scheller EV, Robinson KM, Crowe CR, Choi SM, Slight SR, Khader SA, Dubin PJ, Enelow RI, Kolls JK, Alcorn JF (2011) Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice. J Immunol 186(3):1666–1674

    CAS  PubMed  Google Scholar 

  • Kühn R, Löhler J et al (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75(2):263–274

    PubMed  Google Scholar 

  • Kumar P, Thakar MS et al (2013) IL-22 from conventional NK cells is epithelial regenerative and inflammation protective during influenza infection. Mucosal Immunol 6(1):69–82

    CAS  PubMed  Google Scholar 

  • Lee JS, Cella M et al (2012) AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 13(2):144–151

    CAS  Google Scholar 

  • Leung JM, Davenport M et al (2014) IL-22-producing CD4 + cells are depleted in actively inflamed colitis tissue. Mucosal Immunol 7(1):124–133

    CAS  PubMed  Google Scholar 

  • Liang SC, Nickerson-Nutter C et al (2010) IL-22 induces an acute-phase response. J Immunol 185(9):5531–5538

    CAS  PubMed  Google Scholar 

  • Liang SC, Tan X-Y et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203(10):2271–2279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liesenfeld O (2002) Oral infection of C57BL/6 mice with Toxoplasma gondii: a new model of inflammatory bowel disease? J Infect Dis 185(Suppl 1):S96–S101

    PubMed  Google Scholar 

  • Liesenfeld O, Kosek J, Remington JS, Suzuki Y (1996) Association of CD4 + T cell-dependent, interferon-gamma-mediated necrosis of the small intestine with genetic susceptibility of mice to peroral infection with Toxoplasma gondii. J Exp Med 184(2):597–607

    CAS  PubMed  Google Scholar 

  • Liu Y, Wei SH, Ho AS, de Waal Malefyt R, Moore KW (1994) Expression cloning and characterization of a human IL-10 receptor. J Immunol 152(4):1821–1829

    CAS  PubMed  Google Scholar 

  • Lowes MA, Bowcock AM, Krueger JG (2007) Pathogenesis and therapy of psoriasis. Nature 445(7130):866–873

    CAS  PubMed  Google Scholar 

  • Luci C, Reynders A et al (2009) Influence of the transcription factor RORgammat on the development of NKp46 + cell populations in gut and skin. Nat Immunol 10(1):75–82

    CAS  PubMed  Google Scholar 

  • Mead PS, Griffin PM (1998) Escherichia coli O157:H7. Lancet 352(9135):1207–1212

    CAS  PubMed  Google Scholar 

  • Mennechet FJ, Kasper LH, Rachinel N, Li W, Vandewalle A, Buzoni-Gatel D (2002) Lamina propria CD4 + T lymphocytes synergize with murine intestinal epithelial cells to enhance proinflammatory response against an intracellular pathogen. J Immunol 168(6):2988–2996

    CAS  PubMed  Google Scholar 

  • Miller DM, Klucher KM, Freeman JA, Hausman DF, Fontana D, Williams DE (2009) Interferon lambda as a potential new therapeutic for hepatitis C. Ann N Y Acad Sci. 80(7)

    Google Scholar 

  • Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, Kanno Y, Spalding C, Elloumi HZ, Paulson ML, Davis J, Hsu A, Asher AI, O’Shea J, Holland SM, Paul WE, Douek DC (2008) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452(7188):773–776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minegishi Y, Saito M, Nagasawa M, Takada H, Hara T, Tsuchiya S, Agematsu K, Yamada M, Kawamura N, Ariga T, Tsuge I, Karasuyama H (2009) Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome. J Exp Med 206(6):1291–1301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, Kawamura N, Ariga T, Pasic S, Stojkovic O, Metin A, Karasuyama H (2007) Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448(7157):1058–1062

    CAS  PubMed  Google Scholar 

  • Mitsuyama K, Tomiyasu N, Takaki K, Masuda J, Yamasaki H, Kuwaki K, Takeda T, Kitazaki S, Tsuruta O, Sata M (2006) Interleukin-10 in the pathophysiology of inflammatory bowel disease: increased serum concentrations during the recovery phase. Mediators Inflamm 6:26875

    Google Scholar 

  • Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR (1990) Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science 248(4960):1230–1234

    CAS  PubMed  Google Scholar 

  • Moore TA, Moore BB, Newstead MW, Standiford TJ (2000) Gamma delta-T cells are critical for survival and early proinflammatory cytokine gene expression during murine Klebsiella pneumonia. J Immunol 165(5):2643–2650

    CAS  PubMed  Google Scholar 

  • Mun HS, Aosai F, Chen M, Piao LX, Norose K, Iwakura Y, Yano A (2003) Pathogenicity of Toxoplasma gondii through B-2 cell-mediated downregulation of host defense responses. Microbiol Immunol 47(7):533–542

    CAS  PubMed  Google Scholar 

  • Neufert C, Pickert G et al (2010) Activation of epithelial STAT3 regulates intestinal homeostasis. Cell Cycle 9(4):652–655

    CAS  PubMed  Google Scholar 

  • Neyer LE, Grunig G, Fort M, Remington JS, Rennick D, Hunter CA (1997) Role of interleukin-10 in regulation of T-cell-dependent and T-cell-independent mechanisms of resistance to Toxoplasma gondii. Infect Immun 65(5):1675–1682

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Garra A, Vieira P (2007) T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol 7(6):425–428

    PubMed  Google Scholar 

  • Onoguchi K, Yoneyama M, Takemura A, Akira S, Taniguchi T, Namiki H, Fujita T (2007) Viral infections activate types I and III interferon genes through a common mechanism. J Biol Chem 282(10):7576–7581

    CAS  PubMed  Google Scholar 

  • Ota N, Wong K et al (2011) IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat Immunol 12(10):941–948

    CAS  PubMed  Google Scholar 

  • Otkjaer K, Kragballe K, Funding AT, Clausen JT, Noerby PL, Steiniche T, Iversen L (2005) The dynamics of gene expression of interleukin-19 and interleukin-20 and their receptors in psoriasis. Br J Dermatol 153(5):911–918

    CAS  PubMed  Google Scholar 

  • Ouyang W, Rutz S et al (2011) Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 29:71–109

    CAS  PubMed  Google Scholar 

  • Parrish-Novak J, Xu W, Brender T, Yao L, Jones C, West J, Brandt C, Jelinek L, Madden K, McKernan PA, Foster DC, Jaspers S, Chandrasekher YA (2002) Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem 277(49):47517–47523

    CAS  PubMed  Google Scholar 

  • Pellegrini M, Calzascia T et al (2011) IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell 144(4):601–613

    CAS  PubMed  Google Scholar 

  • Pène J, Chevalier S et al (2008) Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J Immunol 180(11):7423–7430

    PubMed  Google Scholar 

  • Perona-Wright G, Mohrs K, Szaba FM, Kummer LW, Madan R, Karp CL, Johnson LL, Smiley ST, Mohrs M (2009) Systemic but not local infections elicit immunosuppressive IL-10 production by natural killer cells. Cell Host Microbe 6(6):503–512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pickert G, Neufert C et al (2009) STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 206(7):1465–1472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pociask DA, Scheller EV, Mandalapu S, McHugh KJ, Enelow RI, Fattman CL, Kolls JK, Alcorn JF (2013) IL-22 is essential for lung epithelial repair following influenza infection. Am J Pathol 182(4):1286–1296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prando C, Samarina A et al (2013) Inherited IL-12p40 deficiency: genetic, immunologic, and clinical features of 49 patients from 30 kindreds. Medicine (Baltimore) 92(2):109–122

    CAS  Google Scholar 

  • Puel A, Cypowyj S et al (2011) Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332(6025):65–68

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puel A, Doffinger R et al (2010a) Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 207(2):291–297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puel A, Picard C et al (2010b) Inborn errors of mucocutaneous immunity to Candida albicans in humans: a role for IL-17 cytokines? Curr Opin Immunol 22(4):467–474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Randall TD, Carragher DM et al (2008) Development of secondary lymphoid organs. Annu Rev Immunol 26:627–650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ren X, Hu B et al (2010) IL-22 is involved in liver regeneration after hepatectomy. Am J Physiol Gastrointest Liver Physiol 298(1):G74–G80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roers A, Siewe L, Strittmatter E, Deckert M, Schlüter D, Stenzel W, Gruber AD, Krieg T, Rajewsky K, Müller W (2004) T cell-specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation. J Exp Med 200(10):1289–1297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rømer J, Hasselager E, Nørby PL, Steiniche T, Thorn Clausen J, Kragballe K (2003) Epidermal overexpression of interleukin-19 and -20 mRNA in psoriatic skin disappears after short-term treatment with cyclosporine a or calcipotriol. J Invest Dermatol 121(6):1306–1311

    PubMed  Google Scholar 

  • Rutz S, Eidenschenk C, Ouyang W (2013) IL-22, not simply a Th17 cytokine. Immunol Rev 252(1):116–132

    PubMed  Google Scholar 

  • Rutz S, Noubade R et al (2011) Transcription factor c-Maf mediates the TGF-beta-dependent suppression of IL-22 production in T(H)17 cells. Nat Immunol 12(12):1238–1245

    CAS  PubMed  Google Scholar 

  • Rutz S, Ouyang W (2011) Regulation of interleukin-10 and interleukin-22 expression in T helper cells. Curr Opin Immunol 23(5):605–612

    CAS  PubMed  Google Scholar 

  • Sa SM, Valdez PA et al (2007) The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol 178(4):2229–2240

    CAS  PubMed  Google Scholar 

  • Sanos SL, Bui VL et al (2009) RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46 + cells. Nat Immunol 10(1):83–91

    CAS  PubMed  Google Scholar 

  • Satoh-Takayama N, Vosshenrich CA et al (2008) Microbial flora drives interleukin 22 production in intestinal NKp46 + cells that provide innate mucosal immune defense. Immunity 29(6):958–970

    CAS  PubMed  Google Scholar 

  • Schulz SM, Köhler G, Schütze N, Knauer J, Straubinger RK, Chackerian AA, Witte E, Wolk K, Sabat R, Iwakura Y, Holscher C, Müller U, Kastelein RA, Alber G (2008) Protective immunity to systemic infection with attenuated Salmonella enterica serovar enteritidis in the absence of IL-12 is associated with IL-23-dependent IL-22, but not IL-17. J Immunol 181(11):7891–7901

    CAS  PubMed  Google Scholar 

  • Sheikh F, Baurin VV et al (2004) Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2. J Immunol 172(4):2006–2010

    CAS  PubMed  Google Scholar 

  • Shen H, Goodall JC et al (2009) Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum 60(6):1647–1656

    CAS  PubMed  Google Scholar 

  • Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, Kuestner R, Garrigues U, Birks C, Roraback J, Ostrander C, Dong D, Shin J, Presnell S, Fox B, Haldeman B, Cooper E, Taft D, Gilbert T, Grant FJ, Tackett M, Krivan W, McKnight G, Clegg C, Foster D, Klucher KM (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4(1):63–68

    CAS  PubMed  Google Scholar 

  • Siegemund S, Schutze N et al (2009) Differential IL-23 requirement for IL-22 and IL-17A production during innate immunity against Salmonella enterica serovar Enteritidis. Int Immunol 21(5):555–565

    CAS  PubMed  Google Scholar 

  • Simonian PL, Wehrmann F et al (2010) gammadelta T cells protect against lung fibrosis via IL-22. J Exp Med 207(10):2239–2253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sommereyns C, Paul S, Staeheli P, Michiels T (2008) IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog 4(3):1000017

    Google Scholar 

  • Sonnenberg GF, Fouser LA et al (2011a) Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol 12(5):383–390

    CAS  PubMed  Google Scholar 

  • Sonnenberg GF, Monticelli LA et al (2012) Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336(6086):1321–1325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sonnenberg GF, Monticelli LA et al (2011b) CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 34(1):122–134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spahn TW, Maaser C et al (2004) The lymphotoxin-beta receptor is critical for control of murine Citrobacter rodentium-induced colitis. Gastroenterology 127(5):1463–1473

    CAS  PubMed  Google Scholar 

  • Spits H, Artis D et al (2013) Innate lymphoid cells - a proposal for uniform nomenclature. Nat Rev Immunol 13(2):145–149

    CAS  PubMed  Google Scholar 

  • Spits H, Cupedo T (2012) Innate Lymphoid Cells: Emerging Insights in Development, Lineage Relationships, and Function. Annu Rev Immunol 30:647–675

    CAS  PubMed  Google Scholar 

  • Spits H, Di Santo JP (2011) The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol 12(1):21–27

    CAS  PubMed  Google Scholar 

  • Sugimoto K, Ogawa A et al (2008) IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 118(2):534–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Z, Unutmaz D et al (2000) Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288(5475):2369–2373

    CAS  PubMed  Google Scholar 

  • Sutton CE, Lalor SJ et al (2009) Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31(2):331–341

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Sher A, Yap G, Park D, Neyer LE, Liesenfeld O, Fort M, Kang H, Gufwoli E (2000) IL-10 is required for prevention of necrosis in the small intestine and mortality in both genetically resistant BALB/c and susceptible C57BL/6 mice following peroral infection with Toxoplasma gondii. J Immunol 164(10):5375–5382

    CAS  PubMed  Google Scholar 

  • Takatori H, Kanno Y et al (2009) Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 206(1):35–41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trifari S, Kaplan CD et al (2009) Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol 10(8):864–871

    CAS  PubMed  Google Scholar 

  • Upadhyay V, Poroyko V et al (2012) Lymphotoxin regulates commensal responses to enable diet-induced obesity. Nat Immunol 13(10):947–953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Veldhoen M, Hirota K et al (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453(7191):106–109

    CAS  PubMed  Google Scholar 

  • Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328(5975):228–231

    CAS  PubMed  Google Scholar 

  • Vijay-Kumar M, Sanders CJ, Taylor RT, Kumar A, Aitken JD, Sitaraman SV, Neish AS, Uematsu S, Akira S, Williams IR, Gewirtz AT (2007) Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest 117(12):3909–3921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vossenkämper A, Struck D, Alvarado-Esquivel C, Went T, Takeda K, Akira S, Pfeffer K, Alber G, Lochner M, Förster I, Liesenfeld O (2004) Both IL-12 and IL-18 contribute to small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii, but IL-12 is dominant over IL-18 in parasite control. Eur J Immunol 34(11):3197–3207

    PubMed  Google Scholar 

  • Wang M, Tan Z, Zhang R, Kotenko SV, Liang P (2002) Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J Biol Chem 277(9):7341–7347

    CAS  PubMed  Google Scholar 

  • Wang T, Díaz-Rosales P, Martin SA, Secombes CJ (2010) Cloning of a novel interleukin (IL)-20-like gene in rainbow trout Oncorhynchus mykiss gives an insight into the evolution of the IL-10 family. Dev Comp Immunol 34(2):158–167

    CAS  PubMed  Google Scholar 

  • Wilson EH, Wille-Reece U, Dzierszinski F, Hunter CA (2005) A critical role for IL-10 in limiting inflammation during toxoplasmic encephalitis. J Neuroimmunol 165(1–2):63–74

    CAS  PubMed  Google Scholar 

  • Wilson MS, Feng CG, Barber DL, Yarovinsky F, Cheever AW, Sher A, Grigg M, Collins M, Fouser L, Wynn TA (2010) Redundant and pathogenic roles for IL-22 in mycobacterial, protozoan, and helminth infections. J Immunol 184(8):4378–4390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Witte E, Witte K et al (2010) Interleukin-22: a cytokine produced by T, NK and NKT cell subsets, with importance in the innate immune defense and tissue protection. Cytokine Growth Factor Rev 21(5):365–379

    CAS  PubMed  Google Scholar 

  • Witte K, Gruetz G, Volk HD, Looman AC, Asadullah K, Sterry W, Sabat R, Wolk K (2009) Despite IFN-lambda receptor expression, blood immune cells, but not keratinocytes or melanocytes, have an impaired response to type III interferons: implications for therapeutic applications of these cytokines. Genes Immun 10(8):702–714

    CAS  PubMed  Google Scholar 

  • Wolk K, Haugen HS et al (2009) IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are not. J Mol Med 87(5):523–536

    CAS  PubMed  Google Scholar 

  • Wolk K, Kunz S et al (2004) IL-22 increases the innate immunity of tissues. Immunity 21(2):241–254

    CAS  PubMed  Google Scholar 

  • Wolk K, Witte E et al (2006) IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 36(5):1309–1323

    CAS  PubMed  Google Scholar 

  • Xie MH, Aggarwal S et al (2000) Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem 275(40):31335–31339

    CAS  PubMed  Google Scholar 

  • Xu W, Presnell SR et al (2001) A soluble class II cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist. Proc Natl Acad Sci USA 98(17):9511–9516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang L, Zhang Y et al (2010) Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22. J Hepatol 53(2):339–347

    CAS  PubMed  Google Scholar 

  • Yokota Y, Mansouri A et al (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397(6721):702–706

    CAS  PubMed  Google Scholar 

  • Zelante T, Iannitti R et al (2011) IL-22 in antifungal immunity. Eur J Immunol 41(2):270–275

    CAS  PubMed  Google Scholar 

  • Zenewicz LA, Flavell RA (2008) IL-22 and inflammation: leukin’ through a glass onion. Eur J Immunol 38(12):3265–3268

    CAS  PubMed  Google Scholar 

  • Zenewicz LA, Flavell RA (2011) Recent advances in IL-22 biology. Int Immunol 23(3):159–163

    CAS  PubMed  Google Scholar 

  • Zenewicz LA, Yancopoulos GD et al (2007) Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27(4):647–659

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zenewicz LA, Yancopoulos GD et al (2008) Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29(6):947–957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Y, Danilenko DM et al (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445(7128):648–651

    CAS  PubMed  Google Scholar 

  • Zheng Y, Valdez PA et al (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14(3):282–289

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Celine Eidenschenk or Wenjun Ouyang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eidenschenk, C., Rutz, S., Liesenfeld, O., Ouyang, W. (2014). Role of IL-22 in Microbial Host Defense. In: Fillatreau, S., O'Garra, A. (eds) Interleukin-10 in Health and Disease. Current Topics in Microbiology and Immunology, vol 380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43492-5_10

Download citation

Publish with us

Policies and ethics