Skip to main content

Analysis and Optimisation of Cyclone Separators Geometry Using RANS and LES Methodologies

  • Conference paper

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 125))

Abstract

The flow field pattern and gas cyclone performance have been investigated using both RANS and LES methodologies. The solid phase has been simulated using the one-way coupling approach. Both the RSM model and LES can be used efficiently to simulate the main features flow field pattern and estimate the performance. However, when looking at the flow details, LES can more accurately capture the unsteady flow phenomena of the highly swirling flow. Two different optimisation techniques have been applied (namely, the Nelder-Mead and the genetic algorithms) to obtain the cyclone geometry for minimum pressure drop. Two sources of data for the objective function have been used, mathematical models and experimental data. Starting from a Stairmand design an improved cyclone geometry is found using seven geometrical design variables. A CFD comparison between the original design and the new design has been performed. The simulations confirm the superior performance of the new design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Derksen, J.J.: Separation performance predictions of a stairmand high-efficiency cyclone. AIChE Journal 49(6), 1359–1371 (2003)

    Article  Google Scholar 

  2. Derksen, J.J., Van den Akker, H.E.A.: Simulation of vortex core precession in a reverse-flow cyclone. AIChE Journal 46(7), 1317–1331 (2000)

    Article  Google Scholar 

  3. Elsayed, K., Lacor, C.: Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations. Chemical Engineering Science 65(22), 6048–6058 (2010)

    Article  Google Scholar 

  4. Elsayed, K., Lacor, C.: The effect of cyclone inlet dimensions on the flow pattern and performance. Applied Mathematical Modelling 35(4), 1952–1968 (2011)

    Article  Google Scholar 

  5. Elsayed, K., Lacor, C.: Numerical modeling of the flow field and performance in cyclones of different cone-tip diameters. Computers & Fluids 51(1), 48–59 (2011)

    Article  Google Scholar 

  6. Elsayed, K., Lacor, C.: Modeling and pareto optimization of gas cyclone separator performance using RBF type artificial neural networks and genetic algorithms. Powder Technology 217, 84–99 (2012)

    Article  Google Scholar 

  7. Elsayed, K., Lacor, C.: The effect of cyclone vortex finder dimensions on the flow pattern and performance using LES. Computers & Fluids 71, 224–239 (2013)

    Article  MathSciNet  Google Scholar 

  8. Hoekstra, A.J.: Gas flow field and collection efficiency of cyclone separators. PhD thesis, Technical University Delft (2000)

    Google Scholar 

  9. Hoekstra, A.J., Derksen, J.J., Van Den Akker, H.E.A.: An experimental and numerical study of turbulent swirling flow in gas cyclones. Chemical Engineering Science 54, 2055–2065 (1999)

    Article  Google Scholar 

  10. Kaya, F., Karagoz, I.: Performance analysis of numerical schemes in highly swirling turbulent flows in cyclones. Current Science 94(10), 1273–1278 (2008)

    Google Scholar 

  11. Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics 68(3), 537–566 (1975)

    Article  MATH  ADS  Google Scholar 

  12. Nelder, J.A., Mead, R.: A simplex method for function minimization. The Computer Journal 7(4), 308–313 (1965)

    Article  MATH  Google Scholar 

  13. Shalaby, H.: On the potential of large eddy simulation to simulate cyclone separators. PhD thesis, Chemnitz University of Technology, Chemnitz, Germany (2007)

    Google Scholar 

  14. Shalaby, H., Pachler, K., Wozniak, K., Wozniak, G.: Comparative study of the continuous phase flow in a cyclone separator using different turbulence models. International Journal for Numerical Methods in Fluids 48(11), 1175–1197 (2005)

    Article  MATH  ADS  Google Scholar 

  15. Slack, M.D., Prasad, R.O., Bakker, A., Boysan, F.: Advances in cyclone modeling using unstructured grids. Trans. IChemE 78 Part A (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khairy Elsayed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elsayed, K., Lacor, C. (2014). Analysis and Optimisation of Cyclone Separators Geometry Using RANS and LES Methodologies. In: Deville, M., Estivalezes, JL., Gleize, V., Lê, TH., Terracol, M., Vincent, S. (eds) Turbulence and Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43489-5_8

Download citation

Publish with us

Policies and ethics