Wake Instabilities behind an Axisymmetric Bluff Body at Low Reynolds Numbers

Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 125)

Abstract

This paper aims at understanding the mechanisms that lead to the onset of chaos in the wake of blunt based axisymmetric bluff body. On the basis of direct numerical simulations, conducted for Reynolds numbers ranging from 100 to 800, we show that the flow undergoes multiple transitions, successively giving rise to the Steady State SS and to the Reflectional Symmetry Preserving RSP a , RSP b and RSP c wake states. In particular, the RSP c state is characterized by intermittent vortex stretching denoting the onset of chaos and the potential occurence of a third instability that superimposes to the first and second instability associated with state RSP a and RSP b respectively. Interestingly, the reflectional symmetry plane that characterizes the RSP states is still retained. Hence, chaos is triggered before the symmetry breaking and the occurence of the Reflectional Symmetry Breaking RSB state observed at higher Reynolds numbers.

Keywords

Vortex Vorticity Pebble 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim, J., Choi, H.: Distributed forcing of the flow over a circular cylinder. Phys. Fluids 17, 033103 (2005)Google Scholar
  2. 2.
    Choi, H., Jeon, W.P., Kim, J.: Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113–139 (2008)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Jardin, T., Bury, Y.: Spectral and Lagrangian analysis of the forced flow past a circular cylinder using pulsed tangential jets. J. Fluid Mech. 696, 285–300 (2012)MathSciNetCrossRefMATHADSGoogle Scholar
  4. 4.
    Tomboulides, A.G., Orszag, S.A.: Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416, 51–73 (2000)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Fabre, D., Auguste, F., Magnaudet, J.: Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids 20, 051702 (2008)Google Scholar
  6. 6.
    Schwarz, V., Bestek, H., Fasel, H.: Numerical simulation of nonlinear waves in the wake of an axisymmetric bluff body. In: 25th AIAA Fluid Dynamics Conference, AIAA-94:2285 (1994)Google Scholar
  7. 7.
    Bohorquez, P., Sanmiguel-Rojas, E., Sevilla, A., Jimenez-Gonzalez, J.I., Martinez-Bazan, C.: Stability and dynamics of the laminar wake past a slender blunt-based axisymmetric body. J. Fluid Mech. 676, 110–144 (2011)MathSciNetCrossRefMATHADSGoogle Scholar
  8. 8.
    Shams, A., Roelofs, F., Komen, E.M.J., Baglietto, E.: Quasi-direct numerical simulation of a pebble bed configuration. Part I: Flow (velocity) field analysis. Nucl. Eng. Des. (2012)Google Scholar
  9. 9.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)MathSciNetCrossRefMATHADSGoogle Scholar
  10. 10.
    Eckmann, J.P.: Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys. 53, 643–654 (1981)MathSciNetCrossRefMATHADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.ISAEUniversité de ToulouseToulouseFrance

Personalised recommendations