Skip to main content

Penalty Methods for Turbulent Flows Interacting with Obstacles

  • Conference paper
Turbulence and Interactions

Abstract

The objective is to evaluate the applicability of the penalty method for practically high-Re flows and to investigate the influence of wall model on the quality of the predicted results. This penalty method is introduced at first time on staggered Cartesian grid and then using unstructured mesh. For validation, due to faster convergence, 2D finite volume method in a cartesian grid is used to numerically investigate the incompressible unsteady laminar (Re = 100) and turbulent (Re = 3900) flow around a circular cylinder and the turbulent flow in a channel at \(Re_{u_{\tau}}=395\). 3D simulation is performed on an unstructured grid to simulate the turbulent flow behind a circular cylinder at Re = 3900 without the use of a wall model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sarthou, A., Vincent, S., Angot, P., Caltagirone, J.P.: The sub-mesh penalty method. Finite Volumes for Complex Applications V, 633–640 (2008)

    Google Scholar 

  2. Balaras, E., Benocci, C., Piomelli, U.: Two-Layer Approximate Boundary Conditions for Large Eddy Simulations. AIAA J. 34, 1111–1119 (1996)

    Article  MATH  ADS  Google Scholar 

  3. Tessicini, F., Iaccarino, G., Fatica, M., Wang, M., Verzicco, R.: CTR, Ann. Res. Briefs, 349 (2005)

    Google Scholar 

  4. Kalitzin, G., Iaccarino, G.: CTR, Ann. Res. Briefs, 415 (2002)

    Google Scholar 

  5. Archambeau, F., Méchitoua, N., Sakiz, M.: Code Saturne: A Finite Volume Code for Turbulent flows - Industrial applications. Int. J. Finite Vol. 1, 1–62 (2004)

    Google Scholar 

  6. Khadra, K., Angot, P., Parneix, S., Caltagirone, J.-P.: Fictitious domain approach for numerical modelling of Navier-Stokes equations. Int. J. Numer. Meth. Fluids 34, 651–684 (2000)

    Article  MATH  Google Scholar 

  7. Vincent, S., Caltagirone, J.-P.: A one-cell local multigrid method for solving unsteady incompressible multiphase flows. J. Comput. Phys. 163, 172–215 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Arquis, E.: Transferts en milieu poreux et á l’interface: de l’échelle microscopique à l’échelle macroscopique. PhD thesis, Université Bordeaux I (1984)

    Google Scholar 

  9. Vanella, M., Balaras, E.: A moving-least-squares reconstruction for embedded-boundary formulations. J. Comput. Phys. 228, 6617–6628 (2009)

    Article  MATH  ADS  Google Scholar 

  10. Marchioli, C., Armanio, V., Soldati, A.: Simple and accurate scheme for fluid velocity interpolation for Eulerian–Lagrangian computation of dispersed flows in 3D curvilinear grids. Comput. Fluids 36, 1187–1198 (2007)

    Article  MATH  Google Scholar 

  11. Aslam, T.D.: A partial differential equation approach to multidimensional extrapolation. J. Comput. Phys. 193, 349–355 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Spalart, P.R., Allmaras, S.R.: A One-Equation Turbulence Model for Aerodynamic Flows. La Recherche Aérospatiale 1, 5–21 (1994)

    Google Scholar 

  13. Kim, J., Kim, D., Choi, H.: An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 171, 132–150 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Yang, J., Bhushan, S., Suh, J.S., Wang, Z., Koo, B., Sakamoto, N., Xing, T., Stern, F.: Large-Eddy Simulation of Ship Flows with Wall-Layer Models on Cartesian Grids. In: 27th Symposium on Naval Hydrodynamics Seoul, Korea (2008)

    Google Scholar 

  15. Tritton, D.J.: Note on the effect of a nearby obstacle on turbulence intensity in a boundary layer. J. Fluid Mech. 6, 547–567 (1959)

    Article  MATH  ADS  Google Scholar 

  16. Le, D.V., Khoo, B.C., Peraire, J.: An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries. J. Comput. Phys. 220, 109–138 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to Re= 590. Phys. Fluids 11, 943500 (1999)

    Article  Google Scholar 

  18. Medic, G., Daenincky, G., Templeton, J.A.: A framework for near-wall RANS/LES coupling. Center for Turbulence Research, Annual Research Briefs (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Bizid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bizid, W., Etcheverlepo, A., Vincent, S., Caltagirone, J.P., Monfort, D., Hassine, M. (2014). Penalty Methods for Turbulent Flows Interacting with Obstacles. In: Deville, M., Estivalezes, JL., Gleize, V., Lê, TH., Terracol, M., Vincent, S. (eds) Turbulence and Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43489-5_2

Download citation

Publish with us

Policies and ethics