WRF Modelling of Turbulence Triggering Convective Thunderstorms over Singapore

Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 125)


Convective storms represent the main weather threats on Singapore where the amount of water discharged frequently turns into flash floods. Moreover forecasting is a challenging task in this tropical region due to the high instability state of the atmosphere. Therefore Numerical Weather Prediction (NWP) represents an essential tool in flood mitigation. Yet identifying the ideal configuration and parameterization of a NWP model is a milestone to reach accurate forecast. This paper presents the results of a sensitivity analysis of the turbulence and convective schemes of the Weather Research and Forecasting (WRF) model in the framework of Singapore weather forecasting.


Numerical Weather Prediction Cumulus Parameterization Convective Storm Convective Rainfall Cumulus Parameterization Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kerkhoven, E., Gan, T.Y., Shiiba, M., Reuter, G., Takana, K.: A comparison of cumulus parameterization schemes in a numerical weather prediction model for a monsoon rainfall event. Hydrol. Process 20, 1961–1978 (2006)CrossRefADSGoogle Scholar
  2. 2.
    Vaidya, S.S.: The performance of two convective parameterization schemes in a mesoscale model over the Indian region. Meteor. Atmos. Phys. 92, 175–190 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ratnam, V.J., Cox, E.A.: Simulation of monsoon depressions using MM5: sensitivity to cumulus parameterization schemes. Meteor. Atmos. Phys. 93, 53–78 (2006)CrossRefGoogle Scholar
  4. 4.
    Das, S., Mohanty, U.C., Sharma, O.P.: Study of Kuo-type cumulus parameterization during different epochs of the Asian summer monsoon. Mon. Wea. Rev. 116, 715–729 (1988)CrossRefADSGoogle Scholar
  5. 5.
    Anthes, R.A.: A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev. 105, 270–286 (1977)Google Scholar
  6. 6.
    Juneng, L., Tangang, F.T., Reason, C.J.: Numerical case study of an extreme rainfall event during over the east coast Peninsular Malaysia. Meteorol. Atmos. Phys. 98, 81–98 (2007)CrossRefADSGoogle Scholar
  7. 7.
    Salimun, E., Tangang, F.T., Juneng, L.: Simulation of heavy precipitation episode over eastern Peninsular Malaysia using MM5: sensitivity to cumulus parameterization schemes. Meteor. Atmos. Phys. 107, 33–49 (2010)CrossRefGoogle Scholar
  8. 8.
    Betts, A.K., Miller, M.J.: A new convective adjustment scheme. Part II: single column test using GATE wave, BOMEX, ATEX, and Arctic air mass data sets. Q. J. R. Meteorol. Soc. 112, 693–709 (1986)Google Scholar
  9. 9.
    Kain, J.S.: The Kain–Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology 43(1), 170–181 (2004)CrossRefADSGoogle Scholar
  10. 10.
    Johnson, R.H., Houze, R.A.: Precipitating systems of the Asian monsoon. In: Chang, C.P., Krishnamurti, T.N. (eds.) Monsoon Meteorology. Oxford University Press, New York (1987)Google Scholar
  11. 11.
    Weather Research and Forecasting ARW Version 3 Modeling System User Guide. In: Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research (2011)Google Scholar
  12. 12.
    Janjic, Z.I.: The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev. 122, 927–945 (1994)CrossRefADSGoogle Scholar
  13. 13.
    Grell, G.A., Devenyi, D.: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 29(14), 1693 (2002)CrossRefADSGoogle Scholar
  14. 14.
    Arakawa, A., Schubert, W.H.: Interaction of a cumulus cloud ensemble with the large scale environment. Part I. J. Atmos. Sci. 31, 674–701 (1974)CrossRefADSGoogle Scholar
  15. 15.
    Tiedtke, M.: A comprehensive massflux scheme for cumulus parameterization in large scale models. Mon. Wea. Rev. 117, 1779–1800 (1989)CrossRefADSGoogle Scholar
  16. 16.
    Hong, S.-Y., Pan, H.-L.: Convective Trigger Function for a Mass-Flux Cumulus Parameterization Scheme. Mon. Wea. Rev. 126, 2599–2620 (1998)CrossRefADSGoogle Scholar
  17. 17.
    Kain, J.S., Fritsch, J.M.: A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization. J. Atmos. Sci. 47(23), 2784–2802 (1990)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Singapore Delft Water AllianceNational University of SingaporeSingaporeSingapore
  2. 2.Laboratoire de l’Atmosphre et des CyclonesUMR 8105 Universit de La Runion/Mto-France/CNRSSaint Denis de La RunionFrance

Personalised recommendations