Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 860 Accesses

Abstract

One of the bottlenecks for high-order numerical methods on unstructured grids is the design of effective and robust limiters for the simulation of flow with discontinuities. The challenge is to maintain the high-order accuracy in smooth regions while capturing the discontinuities in high resolutions without oscillations. This chapter will provide several high order and high resolution nonoscillatory limiters for the high-order FVM. Before introducing the unstructured FVM limiter, we review the historical research for the nonoscillatory schemes in the development of computational fluid methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Godunov SK (1959) A finite-difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat Sbornik 47:271–306

    MathSciNet  Google Scholar 

  2. Harten A, Engquist B, Osher S et al (1987) Uniformly high order accurate essentially non-oscillatory schemes (III). J Comput Phys 71:231–303

    Article  MATH  MathSciNet  Google Scholar 

  3. Harten A (1991) Recent development in shock-capturing schemes. ICASE report No. 91–8

    Google Scholar 

  4. Zhang XX, Shu CW (2010) On maximum-principle-satisfying high order schemes for scalar conservation laws. J Comput Phys 229:3091–3120

    Article  MATH  MathSciNet  Google Scholar 

  5. Barth TJ, Jespersen D (1989) The design and application of upwind schemes on unstructured meshes. In: Proceedings of the 27th AIAA aerospace sciences meeting, Reno, NV, Paper AIAA 89–0366

    Google Scholar 

  6. Venkatakrishnan V (1995) Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J Comput Phys 118:120–130

    Article  MATH  Google Scholar 

  7. Park JS, Yoon SH, Kim C (2010) Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids. J Comput Phys 229:788–812

    Article  MATH  MathSciNet  Google Scholar 

  8. Park JS, Kim C (2011) Higher-order discontinuous Galerkin-MLP methods on triangular and tetrahedral grids. In: AIAA 2011–3059, 20th AIAA computational fluid dynamics conference, Honolulu, Hawaii, 27–30 June 2011

    Google Scholar 

  9. Cockburn B, Shu CW (2001) Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J Sci Comput 16:173–261

    Article  MATH  MathSciNet  Google Scholar 

  10. Luo H, Baum JD, Löhner R (2007) A hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J Comput Phys 225:686–713

    Article  MATH  MathSciNet  Google Scholar 

  11. Yang M, Wang ZJ (2009) A parameter-free generalized moment limiter for high-order methods on unstructured grids. Adv Appl Math Mech 1(4):451–480

    MathSciNet  Google Scholar 

  12. Li WA, Ren YX. High order k-exact WENO finite volume schemes for solving gas dynamic Euler equations on unstructured grids. Int J Numer Meth Fluids DOI:10.1002/fld.2710

    Google Scholar 

  13. Friedrich O (1998) Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J Comput Phys 144:194–212

    Article  MathSciNet  Google Scholar 

  14. Dumbser M, Käser M (2007) Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J Comput Phys 221:693–723

    Article  MATH  MathSciNet  Google Scholar 

  15. Dumbser M, Käser M, Titarev VA et al (2007) Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J Comput Phys 226:204–243

    Article  MATH  MathSciNet  Google Scholar 

  16. Hu C, Shu CW (1999) Weighted essentially non-oscillatory schemes on triangular meshes. J Comput Phys 150:97–127

    Article  MATH  MathSciNet  Google Scholar 

  17. Sweby PK (1984) High-resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal 21(5):995–1011

    Article  MATH  MathSciNet  Google Scholar 

  18. Choi H, Liu JG (1998) The reconstruction of upwind fluxes for conservation laws: its behavior in dynamic and steady state calculations. J Comput Phys 144:237–256

    Article  MATH  MathSciNet  Google Scholar 

  19. Zoppou C, Roberts S (2003) Explicit schemes for dam-break simulations. J Hydraul Eng 129:11–34

    Article  Google Scholar 

  20. Ĉada M, Torrilhon M (2009) Compact third-order limiter functions for finite volume methods. J. Comput. Phys. 228:4118–4145

    Article  MATH  MathSciNet  Google Scholar 

  21. Li WA, Ren YX, Lei GD et al (2011) The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids. J Comput Phys 230(21):7775–7795

    Article  MATH  MathSciNet  Google Scholar 

  22. Li WA, Ren YX (2012) The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids II: extension to high order finite volume schemes. J Comput Phys 231(11):4053–4077

    Article  MATH  MathSciNet  Google Scholar 

  23. Wang ZJ (2002) Spectral (finite) volume method for conservation laws on unstructured grids, basic formulation. J Comput Phys 178:210–251

    Article  MATH  MathSciNet  Google Scholar 

  24. Krivodonova L et al (2004) Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl Numer Math 48:323–338

    Article  MATH  MathSciNet  Google Scholar 

  25. LeVeque RJ (1996) High-resolution conservative algorithms for advection in incompressible flow. Siam J Numer Anal 33:627–665

    Article  MATH  MathSciNet  Google Scholar 

  26. Sod G (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J Comput Phys 27:1–31

    Article  MATH  MathSciNet  Google Scholar 

  27. Lax PD (1954) Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun Pure Appl Math 7:159–193

    Article  MATH  MathSciNet  Google Scholar 

  28. Shu CW, Osher S (1988) Efficient implementation of essentially non-oscillatory shock capturing schemes. J Comput Phys 77:439–471

    Article  MATH  MathSciNet  Google Scholar 

  29. Jiang GS, Shu CW (1996) Efficient implementation of weighted ENO schemes. J Comput Phys 126:202–228

    Article  MATH  MathSciNet  Google Scholar 

  30. Woodward P, Colella P (1984) The numerical simulation of two-dimensional fluid flow with strong shocks. J Comput Phys 54:115–173

    Article  MATH  MathSciNet  Google Scholar 

  31. Yee HC, Sandham ND, Djomehri MJ (1999) Low-dissipative high-order shock-capturing methods using characteristic-based filters. J Comput Phys 150:199–238

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanai Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, W. (2014). Accuracy Preserving Limiters for High-Order Finite Volume Methods. In: Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43432-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43432-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43431-4

  • Online ISBN: 978-3-662-43432-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics