Skip to main content

Detection of Organic Compounds with Whole-Cell Bioluminescent Bioassays

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 144))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AhR:

Aryl hydrocarbon receptor

AR:

Androgen receptor

ARE:

Androgen response element

ARNT:

AhR nuclear translocator

BPA:

Bisphenol-A

BTEX:

Benzene, toluene, ethylbenzene, and xylene

CALUX:

Chemical-activated luciferase expression

DDE:

Dichlorodiphenyldichloroethylene

DDT:

Dichlorodiphenyltrichloroethane

DRE:

Dioxin-responsive element

E2:

17β-estradiol

EDC:

Endocrine disrupting chemical

EE2:

17α-ethynylestradiol

ER:

Estrogen receptor

ERE:

Estrogen response element

GC:

Gas chromatography

GR:

Glucocorticoid receptor

HPLC:

High-performance liquid chromatography

MS:

Mass spectrometry

PAH:

Polycyclic aromatic hydrocarbon

PCB:

Polychlorinated biphenyls

PCDD:

Polychlorinated dibenzo-p-dioxin

PCDF:

Polychlorinated dibenzofuran

PMT:

Photomultiplier tube

PR:

Progesterone receptor

T3:

3,3′,5-triiodo-L-thyronine

TCA:

1,1,1 trichloroethane

TCDD:

2,3,7,8-tetrachlorodibenzo-p-dioxin

TCE:

Trichloroethylene

TR:

Thyroid receptor

References

  1. Yeh BJ, Lim WA (2007) Synthetic biology: lessons from the history of synthetic organic chemistry. Nat Chem Biol 3:521–525

    CAS  Google Scholar 

  2. Snyder R (2000) Overview of the toxicology of benzene. J Toxicol Env Health-Pt A 61:339–346

    CAS  Google Scholar 

  3. Dawson JJC, Iroegbu CO, Maciel H, Paton GI (2008) Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compounds in soils. J Appl Microbiol 104:141–151

    CAS  Google Scholar 

  4. Girotti S, Bolelli L, Roda A, Gentilomi G, Musiani M (2002) Improved detection of toxic chemicals using bioluminescent bacteria. Anal Chim Acta 471:113–120

    CAS  Google Scholar 

  5. Xu T, Close DM, Sayler GS, Ripp SA (2013) Genetically modified whole-cell bioreporters for environmental assessment. Ecol Indic 28:125–141

    CAS  Google Scholar 

  6. Williams PA, Murray K (1974) Metabolism of benzoate and methylbenzoates by Pseudomonas putida mt-2: evidence for existance of a TOL plasmid. J Bacteriol 120:416–423

    CAS  Google Scholar 

  7. Franklin FCH, Bagdasarian M, Bagdasarian MM, Timmis KN (1981) Molecular and functional analysis of the TOL Plasmid pWWO from Pseudomonas putida and cloning of genes for the enitre regulated aromatic ring meta-cleavage pathway. Proc Natl Acad Sci USA 78:7458–7462

    CAS  Google Scholar 

  8. Worsey MJ, Franklin FCH, Williams PA (1978) Regulation of degradative pathway enzymes coded for by TOL plasmid pWWO from Pseudomonas putida mt-2. J Bacteriol 134:757–764

    CAS  Google Scholar 

  9. Worsey MJ, Williams PA (1975) Metabolism of toluene and xylenes by Pseudomonas putida mt-2: evidence for a new function of TOL plasmid. J Bacteriol 124:7–13

    CAS  Google Scholar 

  10. Ramos JL, Marques S, Timmis KN (1997) Transcriptional control of the Pseudomonas tol plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. An Rev Microbiol 51:341–373

    CAS  Google Scholar 

  11. Li Y-F, Li F-Y, Ho C-L, Liao VH-C (2008) Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds. Environ Pollut 152:123–129

    CAS  Google Scholar 

  12. Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV (2007) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 57:2823–2829

    CAS  Google Scholar 

  13. Willardson BM, Wilkins JF, Rand TA, Schupp JM, Hill KK, Keim P, Jackson PJ (1998) Development and testing of a bacterial biosensor for toluene-based environmental contaminants. Appl Environ Microbiol 64:1006–1012

    CAS  Google Scholar 

  14. Tecon R, Beggah S, Czechowska K, Sentchilo V, Chronopoulou PM, McGenity TJ, van der Meer JR (2010) Development of a multistrain bacterial bioreporter platform for the monitoring of hydrocarbon contaminants in marine environments. Environ Sci Technol 44:1049–1055

    CAS  Google Scholar 

  15. Applegate BM, Kehrmeyer SR, Sayler GS (1998) A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethybenzene, and xylene (BTEX) sensing. Appl Environ Microbiol 64:2730–2735

    CAS  Google Scholar 

  16. Zylstra G, McCombie W, Gibson D, Finette B (1988) Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon. Appl Environ Microbiol 54:1498–1503

    CAS  Google Scholar 

  17. Wang Y, Rawlings M, Gibson DT, Labbe D, Bergeron H, Brousseau R, Lau PCK (1995) Identification of a membrane protein and a truncated LysR type regulator associated with the toluene degradation pathway in Pseudomonas putida F1. Mol Gen Genet 246:570–579

    CAS  Google Scholar 

  18. Kuncova G, Pazlarova J, Hlavata A, Ripp S, Sayler GS (2011) Bioluminescent bioreporter Pseudomonas putida TVA8 as a detector of water pollution. Operational conditions and selectivity of free cells sensor. Ecol Indic 11:882–887

    CAS  Google Scholar 

  19. Stiner L, Halverson LJ (2002) Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl Environ Microbiol 68:1962–1971

    CAS  Google Scholar 

  20. Bhattacharyya J, Read D, Amos S, Dooley S, Killham K, Paton GI (2005) Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy. Environ Pollut 134:485–492

    CAS  Google Scholar 

  21. Eaton RW, Timmis KN (1986) Characterization of a plasmid-specified pathway for catabolism of isopropylbenzne in Pseudomonas putida RE204. J Bacteriol 168:123–131

    CAS  Google Scholar 

  22. Selifonova OV, Eaton RW (1996) Use of an ipb-lux fusion to study regulation of the isopropylbenzene catabolism operon of Pseudomonas putida RE204 and to detect hydrophobic pollutants in the environment. Appl Environ Microbiol 62:778–783

    CAS  Google Scholar 

  23. Mumtaz MM, George JD, Gold KW, Cibulas W, Derosa CT (1996) ATSDR evaluation of health effects of chemicals. 4. Polycyclic aromatic hydrocarbons (PAHs): understanding a complex problem. Toxicol Ind Health 12:742–971

    CAS  Google Scholar 

  24. Grund AD, Gunsalus IC (1983) Cloning of genes for naphthalene metabolism in Pseudomonas putida. J Bacteriol 156:89–94

    CAS  Google Scholar 

  25. Burlage RS, Sayler GS, Larimer F (1990) Monitoring of naphthalene catabolism by bioluminescence with nah-lux transcriptional fusions. J Bacteriol 172:4749–4757

    CAS  Google Scholar 

  26. Dorn JG, Brusseau ML, Maier RM (2005) Real-time, in situ monitoring of bioactive zone dynamics in heterogeneous systems. Environ Sci Technol 39:8898–8905

    CAS  Google Scholar 

  27. Dorn JG, Frye RJ, Maier RM (2003) Effect of temperature, pH, and initial cell number on luxCDABE and nah gene expression during naphthalene and salicylate catabolism in the bioreporter organism Pseudomonas putida RB1353. Appl Environ Microbiol 69:2209–2216

    CAS  Google Scholar 

  28. Dorn JG, Mahal MK, Brusseau ML, Maier RM (2004) Employing a novel fiber optic detection system to monitor the dynamics of in situ lux bioreporter activity in porous media: system performance update. Anal Chim Acta 525:63–74

    CAS  Google Scholar 

  29. King JMH, Digrazia PM, Applegate B, Burlage R, Sanseverino J, Dunbar P, Larimer F, Sayler GS (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249:778–781

    CAS  Google Scholar 

  30. Trogl J, Chauhan A, Ripp S, Layton AC, Kuncova G, Sayler GS (2012) Pseudomonas fluorescens HK44: lessons learned from a model whole-cell bioreporter with a broad application history. Sensors 12:1544–1571

    CAS  Google Scholar 

  31. Valdman E, Gutz IGR (2008) Bioluminescent sensor for naphthalene in air: Cell immobilization and evaluation with a dynamic standard atmosphere generator. Sens Actuator B-Chem 133:656–663

    CAS  Google Scholar 

  32. Ripp S, Nivens DE, Ahn Y, Werner C, Jarrell J, Easter JP, Cox CD, Burlage RS, Sayler GS (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34:846–853

    CAS  Google Scholar 

  33. Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289

    CAS  Google Scholar 

  34. Laurie AD, Lloyd-Jones G (1999) The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 181:531–540

    CAS  Google Scholar 

  35. Chakrabarty A, Chou G, Gunsalus I (1973) Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc Natl Acad Sci USA 70:1137–1140

    CAS  Google Scholar 

  36. Eggink G, Engel H, Meijer W, Otten J, Kingma J, Witholt B (1988) Alkane utilization in Pseudomonas oleovorans. Structure and function of the regulatory locus alkR. J Biol Chem 263:13400–13405

    CAS  Google Scholar 

  37. Sticher P, Jaspers MCM, Stemmler K, Harms H, Zehnder AJB, van der Meer JR (1997) Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol 63:4053–4060

    CAS  Google Scholar 

  38. Owen DJ, Eggink G, Hauer B, Kok M, McBeth DL, Yang YL, Shapiro JA (1984) Physical structure, genetic content and expression of the alkBAC operon. Mol Gen Genet 197:373–383

    CAS  Google Scholar 

  39. Minak-Bernero V, Bare RE, Haith CE, Grossman MJ (2004) Detection of alkanes, alcohols, and aldehydes using bioluminescence. Biotechnol Bioeng 87:170–177

    CAS  Google Scholar 

  40. Bosetti A, van Beilen JB, Preusting H, Lageveen RG, Witholt B (1992) Production of primary aliphatic alcohols with a recombinant Pseudomonas strain, encoding the alkane hydroxylase enzyme system. Enzyme Microb Technol 14:702–708

    CAS  Google Scholar 

  41. Francisco W, Abu-Soud H, Baldwin T, Raushel F (1993) Interaction of aldehyde substrate and inhibitors to bacterial luciferase. J Biol Chem 268:24734–24741

    CAS  Google Scholar 

  42. Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715

    CAS  Google Scholar 

  43. Zhang D, He Y, Wang Y, Wang H, Wu L, Aries E, Huang WE (2012) Whole-cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills. Microb Biotechnol 5:87–97

    CAS  Google Scholar 

  44. Zhang DY, Fakhrullin RF, Ozmen M, Wang H, Wang J, Paunov VN, Li GH, Huang WE (2011) Functionalization of whole-cell bacterial reporters with magnetic nanoparticles. Microb Biotechnol 4:89–97

    CAS  Google Scholar 

  45. Kumari R, Tecon R, Beggah S, Rutler R, Arey JS, van der Meer JR (2011) Development of bioreporter assays for the detection of bioavailability of long-chain alkanes based on the marine bacterium Alcanivorax borkumensis strain SK2. Environ Microbiol 13:2808–2819

    CAS  Google Scholar 

  46. van Hylckama Vlieg JET, Janssen DB (2001) Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes. J Biotechnol 85:81–102

    Google Scholar 

  47. Arcangeli J-P, Arvin E (1997) Modeling of the cometabolic biodegradation of trichloroethylene by toluene-oxidizing bacteria in a biofilm system. Environ Sci Technol 31:3044–3052

    CAS  Google Scholar 

  48. Sponza DT (2003) Toxicity and treatability of carbontetrachloride and tetrachloroethylene in anaerobic batch cultures. Int Biodeterior Biodegrad 51:119–127

    CAS  Google Scholar 

  49. Shingleton JT, Applegate BM, Nagel AC, Bienkowski PR, Sayler GS (1998) Induction of the tod operon by trichloroethylene in Pseudomonas putida TVA8. Appl Environ Microbiol 64:5049–5052

    CAS  Google Scholar 

  50. Phoenix P, Keane A, Patel A, Bergeron H, Ghoshal S, Lau P (2003) Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor. Environ Microbiol 5:1309–1327

    CAS  Google Scholar 

  51. Lopes N, Hawkins SA, Jegier P, Menn F-M, Sayler GS, Ripp S (2012) Detection of dichloromethane with a bioluminescent (lux) bacterial bioreporter. J Ind Microbiol Biotechnol 39:45–53

    CAS  Google Scholar 

  52. Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: Biochemical and molecular features. J Biosci Bioeng 105:433–449

    CAS  Google Scholar 

  53. Layton AC, Muccini M, Ghosh MM, Sayler GS (1998) Construction of a bioluminescent reporter strain to detect polychlorinated biphenyls. Appl Environ Microbiol 64:5023–5026

    CAS  Google Scholar 

  54. Bradley C, Berube PR (2008) Characterization of anionic surfactant-induced toxicity in a primary effluent. J Environ Eng Sci 7:63–70

    CAS  Google Scholar 

  55. Layton AC, Gregory B, Schultz TW, Sayler GS (1999) Validation of genetically engineered bioluminescent surfactant resistant bacteria as toxicity assessment tools. Ecotox Environ Safe 43:222–228

    CAS  Google Scholar 

  56. Park SH, Lee K, Chae JC, Kim CK (2004) Construction of transformant reporters carrying fused genes using pcbC promoter of Pseudomonas sp DJ-12 for detection of aromatic pollutants. Environ Monit Assess 92:241–251

    CAS  Google Scholar 

  57. Jaspers MCM, Suske WA, Schmid A, Goslings DAM, Kohler HPE, van der Meer JR (2000) HbpR, a new member of the XylR/DmpR subclass within the NtrC family of bacterial transcriptional activators, regulates expression of 2-hydroxybiphenyl metabolism in Pseudomonas azelaica HBP1. J Bacteriol 182:405–417

    CAS  Google Scholar 

  58. Turner K, Xu S, Pasini P, Deo S, Bachas L, Daunert S (2007) Hydroxylated polychlorinated biphenyl detection based on a genetically engineered bioluminescent whole-cell sensing system. Anal Chem 79:5740–5745

    CAS  Google Scholar 

  59. Tropel D, Bahler A, Globig K, van der Meer JR (2004) Design of new promoters and of a dual-bioreporter based on cross-activation by the two regulatory proteins XylR and HbpR. Environ Microbiol 6:1186–1196

    CAS  Google Scholar 

  60. Krastanov A, Alexieva Z, Yemendzhiev H (2013) Microbial degradation of phenol and phenolic derivatives. Eng Life Sci 13:76–87

    CAS  Google Scholar 

  61. Shingler V, Franklin FCH, Tsuda M, Holroyd D, Bagdasarian M (1989) Molecular analysis of a plasmid-encoded phenol hydroxylase from Pseudomonas CF600. J Gen Microbiol 135:1083–1092

    CAS  Google Scholar 

  62. Shingler V, Bartilson M, Moore T (1993) Cloning and nucleotide-sequencing of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by PVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. J Bacteriol 175:1596–1604

    CAS  Google Scholar 

  63. Leedjarv A, Ivask A, Virta M, Kahru A (2006) Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors. Chemosphere 64:1910–1919

    Google Scholar 

  64. Wise AA, Kuske CR (2000) Generation of novel bacterial regulatory proteins that detect priority pollutant phenols. Appl Environ Microbiol 66:163–169

    CAS  Google Scholar 

  65. Gupta S, Saxena M, Saini N, Mahmooduzzafar, Kumar R, Kumar A (2012) An effective strategy for a whole-cell biosensor based on putative effector interaction site of the regulatory DmpR protein. PLoS ONE 7: e43527

    Google Scholar 

  66. Ehrt S, Schirmer F, Hillen W (1995) Genetic organization, nucleotide sequence and regulation of expression of genes encoding phenol hydroxylase and catechol 1,2-dioxygenase in Acinetobacter calcoaceticus NCIB8250. Mol Microbiol 18:13–20

    CAS  Google Scholar 

  67. Abd-El-Haleem D, Ripp S, Scott C, Sayler GS (2002) A luxCDABE-based bioluminescent bioreporter for the detection of phenol. J Ind Microbiol Biotechnol 29:233–237

    CAS  Google Scholar 

  68. Zaki S, Abd-El-Haleem D, Abulhamd A, Elbery H, AbuElreesh G (2008) Influence of phenolics on the sensitivity of free and immobilized bioluminescent Acinetobacter bacterium. Microbiol Res 163:277–285

    CAS  Google Scholar 

  69. Wiles S, Whiteley AS, Philp JC, Bailey MJ (2003) Development of bespoke bioluminescent reporters with the potential for in situ deployment within a phenolic-remediating wastewater treatment system. J Microbiol Methods 55:667–677

    CAS  Google Scholar 

  70. Ghosh SK, Doctor PB (1992) Toxicity screening of phenol using Microtox. Environ Toxicol Water Quality 7:157–163

    CAS  Google Scholar 

  71. Ismailov AD, Pogosyan SI, Mitrofanova TI, Egorov NS, Netrusov AI (2000) Bacterial bioluminescence inhibition by chlorophenols. Appl Biochem Microbiol 36:404–408

    Google Scholar 

  72. Kudryasheva N, Vetrova E, Kuznetsov A, Kratasyuk V, Stom D (2002) Bioluminescence assays: Effects of quinones and phenols. Ecotox Environ Safe 53:221–225

    CAS  Google Scholar 

  73. Berglind R, Leffler P, Sjostrom M (2010) Interactions between pH, potassium, calcium, bromide, and phenol and their effects on the bioluminescence of Vibrio fischeri. J Toxicol Env Health-Pt A 73:1102–1112

    CAS  Google Scholar 

  74. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev 30:293–342

    CAS  Google Scholar 

  75. Alcock RE, Behnisch PA, Jones KC, Hagenmaier H (1998) Dioxin-like PCBs in the environment—human exposure and the significance of sources. Chemosphere 37:1457–1472

    CAS  Google Scholar 

  76. Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO (1995) The E-SCREEN assay as a tool to identify estrogens—an update on estrogenic environmental pollutants. Environ Health Perspect 103:113–122

    CAS  Google Scholar 

  77. Van den Berg M, Birnbaum L, Bosveld A, Brunström B, Cook P, Feeley M, Giesy JP, Hanberg A, Hasegawa R, Kennedy SW (1998) Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect 106:775–792

    Google Scholar 

  78. Ahlborg UG, Brouwer A, Fingerhut MA, Jacobson JL, Jacobson SW, Kennedy SW, Kettrup AA, Koeman JH, Poiger H, Rappe C (1992) Impact of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls on human and environmental health, with special emphasis on application of the toxic equivalency factor concept. Environ Toxicol Pharmacol 228:179–199

    CAS  Google Scholar 

  79. Peterson RE, Theobald HM, Kimmel GL (1993) Developmental and reproductive toxicity of dioxins and related compounds: cross-species comparisons. Crit Rev Toxicol 23:283–335

    CAS  Google Scholar 

  80. Garrison P, Tullis K, Aarts J, Brouwer A, Giesy J, Denison M (1996) Species-specific recombinant cell lines as bioassay systems for the detection of 2,3,7,8-tetrachlorodibenzo-p-dioxin-like chemicals. Toxicol Sci 30:194–203

    CAS  Google Scholar 

  81. Safe SH (1995) Modulation of gene expression and endocrine response pathways by 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds. Pharmacol Ther 67:247–281

    CAS  Google Scholar 

  82. Postlind H, Vu T, Tukey R, Quattrochi LC (1993) Response of human CYP1-luciferase plasmids to 2,3,7,8-tetrachlorodibenzo-p-dioxin and polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 118:255–262

    CAS  Google Scholar 

  83. Murk AJ, Legler J, Denison MS, Giesy JP, vandeGuchte C, Brouwer A (1996) Chemical-activated luciferase gene expression (CALUX): a novel in vitro bioassay for Ah receptor active compounds in sediments and pore water. Fundam Appl Toxicol 33:149–160

    CAS  Google Scholar 

  84. Murk AJ, Leonards PEG, Bulder AS, Jonas AS, Rozemeijer MJC, Denison MS, Koeman JH, Brouwer A (1997) The CALUX (chemical-activated luciferase expression) assay adapted and validated for measuring TCDD equivalents in blood plasma. Environ Toxicol Chem 16:1583–1589

    CAS  Google Scholar 

  85. Bovee TFH, Hoogenboom LAP, Hamers ARM, Traag WA, Zuidema T, Aarts J, Brouwer A, Kuiper HA (1998) Validation and use of the CALUX-bioassay for the determination of dioxins and PCBs in bovine milk. Food Addit Contam 15:863–875

    CAS  Google Scholar 

  86. Cederberg T, Laier P, Vinggaard AM (2002) Screening of food samples for dioxin levels: comparison of GC-MS determination with the CALUX bioassay. Organohalogen Compd 58:409–412

    CAS  Google Scholar 

  87. Tsutsumi T, Amakura Y, Nakamura M, Brown DJ, Clark GC, Sasaki K, Toyoda M, Maitani T (2003) Validation of the CALUX bioassay for the screening of PCDD/Fs and dioxin-like PCBs in retail fish. Analyst 128:486–492

    CAS  Google Scholar 

  88. Van Overmeire I, Carbonnelle S, Van Loco J, Roos P, Brown D, Chu M, Clark G, Goeyens L (2002) Validation of the CALUX bioassay: quantitative screening approach. Organohalogen Compd 58:353–356

    Google Scholar 

  89. Pauwels A, Cenijn PH, Schepens P, Brouwer A (2000) Comparison of chemical-activated luciferase gene expression bioassay and gas chromatography for PCB determination in human serum and follicular fluid. Environ Health Perspect 108:553–557

    CAS  Google Scholar 

  90. Van Wouwe N, Windal I, Vanderperren H, Eppe G, Xhrouet C, Massart A-C, Debacker N, Sasse A, Baeyens W, De Pauw E (2004) Validation of the CALUX bioassay for PCDD/F analyses in human blood plasma and comparison with GC-HRMS. Talanta 63:1157–1167

    Google Scholar 

  91. Leskinen P, Hilscherova K, Sidlova T, Kiviranta H, Pessala P, Salo S, Verta M, Virta M (2008) Detecting AhR ligands in sediments using bioluminescent reporter yeast. Biosens Bioelectron 23:1850–1855

    CAS  Google Scholar 

  92. Windal I, Denison MS, Birnbaum LS, Van Wouwe N, Baeyens W, Goeyens L (2005) Chemically activated luciferase gene expression (CALUX) cell bioassay analysis for the estimation of dioxin-like activity: critical parameters of the CALUX procedure that impact assay results. Environ Sci Technol 39:7357–7364

    CAS  Google Scholar 

  93. Besselink HT, Schipper C, Klamer H, Leonards P, Verhaar H, Felzel E, Murk AJ, Thain J, Hosoe K, Schoeters G, Legler J, Brouwer B (2004) Intra- and interlaboratory calibration of the DR CALUX® bioassay for the analysis of dioxins and dioxin-like chemicals in sediments. Environ Toxicol Chem 23:2781–2789

    Google Scholar 

  94. Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384

    CAS  Google Scholar 

  95. Kavlock RJ, Daston GP, DeRosa C, FennerCrisp P, Gray LE, Kaattari S, Lucier G, Luster M, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan DM, Sinks T, Tilson HA (1996) Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the US EPA-sponsored workshop. Environ Health Perspect 104:715–740

    Google Scholar 

  96. Eltzov E, Kushmaro A, Marks RS (2009) Biosensors for endocrine disruptors. In: Shaw I (eds) Endocrine-disrupting chemicals in food. Woodhead Publishing in Food Science Technology and Nutrition, pp 183–208

    Google Scholar 

  97. Svobodova K, Cajthaml T (2010) New in vitro reporter gene bioassays for screening of hormonal active compounds in the environment. Appl Microbiol Biotechnol 88:839–847

    CAS  Google Scholar 

  98. Pons M, Gagne D, Nicolas JC, Mehtali M (1990) A new cellular model of response to estrogens: a bioluminescent test to characterize (anti)estrogen molecules. Biotechniques 9:450

    Google Scholar 

  99. Demirpence E, Duchesne MJ, Badia E, Gagne D, Pons M (1993) MVLN cells—a bioluminescent MCF-7-derived cell line to study the modulation of estrogenic activity. J Steroid Biochem Mol Biol 46:355–364

    CAS  Google Scholar 

  100. Shue MF, Chen FA, Chen TC (2010) Total estrogenic activity and nonylphenol concentration in the Donggang River. Taiwan. Environ Monit Assess 168:91–101

    CAS  Google Scholar 

  101. Wang C, Wang T, Liu W, Ruan T, Zhou QF, Liu JY, Zhang AQ, Zhao B, Jiang GB (2012) The in vitro estrogenic activities of polyfluorinated iodine alkanes. Environ Health Perspect 120:119–125

    CAS  Google Scholar 

  102. Balaguer P, Francois F, Comunale F, Fenet H, Boussioux AM, Pons M, Nicolas JC, Casellas C (1999) Reporter cell lines to study the estrogenic effects of xenoestrogens. Sci Total Environ 233:47–56

    CAS  Google Scholar 

  103. Witters H, Freyberger A, Smits K, Vangenechten C, Lofink W, Weimer M, Bremer S, Ahr PHJ, Berckmans P (2010) The assessment of estrogenic or anti-estrogenic activity of chemicals by the human stably transfected estrogen sensitive MELN cell line: results of test performance and transferability. Reprod Toxicol 30:60–72

    CAS  Google Scholar 

  104. Legler J, van den Brink CE, Brouwer A, Murk AJ, van der Saag PT, Vethaak AD, van der Burg B (1999) Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicol Sci 48:55–66

    CAS  Google Scholar 

  105. Wilson VS, Bobseine K, Gray LE (2004) Development and characterization of a cell line that stably expresses an estrogen-responsive luciferase reporter for the detection of estrogen receptor agonist and antagonists. Toxicol Sci 81:69–77

    CAS  Google Scholar 

  106. Legler J, Zeinstra LM, Schuitemaker F, Lanser PH, Bogerd J, Brouwer A, Vethaak AD, De Voogt P, Murk AJ, Van der Burg B (2002) Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environ Sci Technol 36:4410–4415

    CAS  Google Scholar 

  107. Blankvoort BMG, de Groene EM, van Meeteren-Kreikamp AP, Witkamp RF, Rodenburg RJT, Aarts J (2001) Development of an androgen reporter gene assay (AR-LUX) utilizing a human cell line with an endogenously regulated androgen receptor. Anal Biochem 298:93–102

    CAS  Google Scholar 

  108. Wilson VS, Bobseine K, Lambright CR, Gray LE (2002) A novel cell line, MDA-kb2, that stably expresses an androgen- and glucocorticoid-responsive reporter for the detection of hormone receptor agonists and antagonists. Toxicol Sci 66:69–81

    CAS  Google Scholar 

  109. Hall RE, Tilley WD, McPhaul MJ, Sutherland RL (1992) Regulation of androgen receptor-gene expression by steroids and retinoic acid in human breast-cancer cells. Int J Cancer 52:778–784

    CAS  Google Scholar 

  110. Vladusic EA, Hornby AE, Guerra-Vladusic FK, Lakins J, Lupu R (2000) Expression and regulation of estrogen receptor beta in human breast tumors and cell lines. Oncol Rep 7:157–167

    CAS  Google Scholar 

  111. Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81:1269–1304

    CAS  Google Scholar 

  112. Quaedackers ME, Van den Brink CE, Wissink S, Schreurs R, Gustafsson JA, Van der Saag PT, Van der Burg B (2001) 4-hydroxytamoxifen trans-represses nuclear factor-kappa B activity in human osteoblastic U2-OS cells through estrogen receptor (ER)alpha, and not through ER beta. Endocrinology 142:1156–1166

    CAS  Google Scholar 

  113. Sonneveld E, Jansen HJ, Riteco JAC, Brouwer A, van der Burg B (2005) Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol Sci 83:136–148

    CAS  Google Scholar 

  114. van der Burg B, Schreurs R, van der Linden S, Seinen W, Brouwer A, Sonneveld E (2008) Endocrine effects of polycyclic musks: do we smell a rat? Int J Androl 31:188–193

    Google Scholar 

  115. Sonneveld E, Riteco JAC, Jansen HJ, Pieterse B, Brouwer A, Schoonen WG, van der Burg B (2006) Comparison of in vitro and in vivo screening models for androgenic and estrogenic activities. Toxicol Sci 89:173–187

    CAS  Google Scholar 

  116. Leskinen P, Michelini E, Picard D, Karp M, Virta M (2005) Bioluminescent yeast assays for detecting estrogenic and androgenic activity in different matrices. Chemosphere 61:259–266

    CAS  Google Scholar 

  117. Michelini E, Leskinen P, Virta M, Karp M, Roda A (2005) A new recombinant cell-based bioluminescent assay for sensitive androgen-like compound detection. Biosens Bioelectron 20:2261–2267

    CAS  Google Scholar 

  118. Sanseverino J, Gupta RK, Layton AC, Patterson SS, Ripp SA, Saidak L, Simpson ML, Schultz TW, Sayler GS (2005) Use of Saccharomyces cerevisiae BLYES expressing bacterial bioluminescence for rapid, sensitive detection of estrogenic compounds. Appl Environ Microbiol 71:4455–4460

    CAS  Google Scholar 

  119. Eldridge ML, Sanseverino J, Layton AC, Easter JP, Schultz TW, Sayler GS (2007) Saccharomyces cerevisiae BLYAS, a new bioluminescent bioreporter for detection of androgenic compounds. Appl Environ Microbiol 73:6012–6018

    CAS  Google Scholar 

  120. Sanseverino J, Eldridge ML, Layton AC, Easter JP, Yarbrough J, Schultz TW, Sayler GS (2009) Screening of potentially hormonally active chemicals using bioluminescent yeast bioreporters. Toxicol Sci 107:122–134

    CAS  Google Scholar 

  121. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: A review of controversies in the field of endocrine disruption. Endocr Rev 30:75–95

    CAS  Google Scholar 

  122. Bonefeld-Jorgensen EC, Long MH, Hofmeister MV, Vinggaard AM (2007) Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: new data and a brief review. Environ Health Perspect 115:69–76

    Google Scholar 

  123. Mankidy R, Wiseman S, Ma H, Giesy JP (2013) Biological impact of phthalates. Toxicol Lett 217:50–58

    CAS  Google Scholar 

  124. Preuss TG, Gurer-Orhan H, Meerman J, Ratte HT (2010) Some nonylphenol isomers show antiestrogenic potency in the MVLN cell assay. Toxicol in Vitro 24:129–134

    CAS  Google Scholar 

  125. Schiliro T, Porfido A, Spina F, Varese GC, Gilli G (2012) Oestrogenic activity of a textile industrial wastewater treatment plant effluent evaluated by the E-screen test and MELN gene-reporter luciferase assay. Sci Total Environ 432:389–395

    CAS  Google Scholar 

  126. He YH, Wiseman SB, Hecker M, Zhang XW, Wang N, Perez LA, Jones PD, El-Din MG, Martin JW, Giesy JP (2011) Effect of ozonation on the estrogenicity and androgenicity of oil sands process-affected water. Environ Sci Technol 45:6268–6274

    CAS  Google Scholar 

  127. Pereira RO, Postigo C, de Alda ML, Daniel LA, Barcelo D (2011) Removal of estrogens through water disinfection processes and formation of by-products. Chemosphere 82:789–799

    CAS  Google Scholar 

  128. Kortenkamp A (2007) Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ Health Perspect 115:98–105

    Google Scholar 

  129. Fenet H, Gomez E, Pillon A, Rosain D, Nicolas JC, Casellas C, Balaguer P (2003) Estrogenic activity in water and sediments of a French river: contribution of alkylphenols. Arch Environ Contam Toxicol 44:1–6

    CAS  Google Scholar 

  130. Close DM, Patterson SS, Ripp SA, Baek SJ, Sanseverino J, Sayler GS (2010) Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line. PLoS ONE 5:e12441

    Google Scholar 

  131. Bundy JG, Campbell CD, Paton GI (2001) Comparison of response of six different luminescent bacterial bioassays to bioremediation of five contrasting oils. J Environ Monit 3:404–410

    CAS  Google Scholar 

  132. Diplock EE, Mardlin DP, Killham KS, Paton GI (2009) Predicting bioremediation of hydrocarbons: Laboratory to field scale. Environ Pollut 157:1831–1840

    CAS  Google Scholar 

  133. Werlen C, Jaspers MCM, van der Meer JR (2004) Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Appl Environ Microbiol 70:43–51

    CAS  Google Scholar 

  134. Paton GI, Reid BJ, Sempled KT (2009) Application of a luminescence-based biosensor for assessing naphthalene biodegradation in soils from a manufactured gas plant. Environ Pollut 157:1643–1648

    CAS  Google Scholar 

  135. Kapanen A, Vikman M, Rajasärkkä J, Virta M, Itävaara M (2013) Biotests for environmental quality assessment of composted sewage sludge. Waste Manag 33:1451–1460

    CAS  Google Scholar 

  136. Sakai S, Takigami H (2003) Integrated biomonitoring of dioxin-like compounds for waste management and environment. Ind Health 41:205–214

    CAS  Google Scholar 

  137. Hilscherova K, Dusek L, Sidlova T, Jalova V, Cupr P, Giesy JP, Nehyba S, Jarkovsky J, Klanova J, Holoubek I (2010) Seasonally and regionally determined indication potential of bioassays in contaminated river sediments. Environ Toxicol Chem 29:522–534

    CAS  Google Scholar 

  138. Kanematsu M, Hayashi A, Denison MS, Young TM (2009) Characterization and potential environmental risks of leachate from shredded rubber mulches. Chemosphere 76:952–958

    CAS  Google Scholar 

  139. Richter CA, Tieber VL, Denison MS, Giesy JP (1997) An in vitro rainbow trout cell bioassay for aryl hydrocarbon receptor-mediated toxins. Environ Toxicol Chem 16:543–550

    CAS  Google Scholar 

  140. Hahn ME (2002) Biomarkers and bioassays for detecting dioxin-like compounds in the marine environment. Sci Total Environ 289:49–69

    CAS  Google Scholar 

  141. Yang J-H, Lee H-G, Park K-Y (2008) Development of human dermal epithelial cell-based bioassay for the dioxins. Chemosphere 72:1188–1192

    CAS  Google Scholar 

  142. He G, Tsutsumi T, Zhao B, Baston DS, Zhao J, Heath-Pagliuso S, Denison MS (2011) Third-generation Ah receptor–responsive luciferase reporter plasmids: Amplification of dioxin-responsive elements dramatically increases CALUX bioassay sensitivity and responsiveness. Toxicol Sci 123:511–522

    CAS  Google Scholar 

  143. Bergamasco AMD, Eldridge M, Sanseverino J, Sodre FF, Montagner CC, Pescara IC, Jardim WF, Umbuzeiro GD (2011) Bioluminescent yeast estrogen assay (BLYES) as a sensitive tool to monitor surface and drinking water for estrogenicity. J Environ Monit 13:3288–3293

    Google Scholar 

  144. Jardim WF, Montagner CC, Pescara IC, Umbuzeiro GA, Bergamasco AMD, Eldridge ML, Sodre FF (2012) An integrated approach to evaluate emerging contaminants in drinking water. Sep Purif Technol 84:3–8

    CAS  Google Scholar 

  145. Salste L, Leskinen P, Virta M, Kronberg L (2007) Determination of estrogens and estrogenic activity in wastewater effluent by chemical analysis and the bioluminescent yeast assay. Sci Total Environ 378:343–351

    CAS  Google Scholar 

  146. Furuichi T, Kannan K, Suzuki K, Tanaka S, Giesy JP, Masunaga S (2006) Occurrence of estrogenic compounds in and removal by a swine farm waste treatment plant. Environ Sci Technol 40:7896–7902

    CAS  Google Scholar 

  147. Mahjoub O, Escande A, Rosain D, Casellas C, Gomez E, Fenet H (2011) Estrogen-like and dioxin-like organic contaminants in reclaimed wastewater: transfer to irrigated soil and groundwater. Water Sci Technol 63:1657–1662

    CAS  Google Scholar 

  148. David A, Gomez E, Ait-Aissa S, Rosain D, Casellas C, Fenet H (2010) Impact of urban wastewater discharges on the sediments of a small Mediterranean river and associated coastal environment: Assessment of estrogenic and dioxin-like activities. Arch Environ Contam Toxicol 58:562–575

    CAS  Google Scholar 

  149. Mnif W, Zidi I, Hassine AIH, Gomez E, Bartegi A, Roig B, Balaguer P (2012) Monitoring endocrine disrupter compounds in the Tunisian Hamdoun River using in vitro bioassays. Soil Sediment Contam 21:815–830

    CAS  Google Scholar 

  150. Maletz S, Floehr T, Beier S, Klumper C, Brouwer A, Behnisch P, Higley E, Giesy JP, Hecker M, Gebhardt W, Linnemann V, Pinnekamp J, Hollert H (2013) In vitro characterization of the effectiveness of enhanced sewage treatment processes to eliminate endocrine activity of hospital effluents. Water Res 47:1545–1557

    CAS  Google Scholar 

  151. Vethaak AD, Lahr J, Schrap SM, Belfroid AC, Rijs GBJ, Gerritsen A, de Boer J, Bulder AS, Grinwis GCM, Kuiper RV, Legler J, Murk TAJ, Peijnenburg W, Verhaar HJM, de Voogt P (2005) An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere 59:511–524

    CAS  Google Scholar 

  152. Houtman CJ, Booij P, van der Valk KM, van Bodegom PM, van den Ende F, Gerritsen AAM, Lamoree MH, Legler J, Brouwer A (2007) Biomonitoring of estrogenic exposure and identification of responsible compounds in bream from Dutch surface waters. Environ Toxicol Chem 26:898–907

    CAS  Google Scholar 

  153. Leusch FDL, De Jager C, Levi Y, Lim R, Puijker L, Sacher F, Tremblay LA, Wilson VS, Chapman HF (2010) Comparison of five in vitro bioassays to measure estrogenic activity in environmental waters. Environ Sci Technol 44:3853–3860

    CAS  Google Scholar 

  154. Wehmas LC, Cavallin JE, Durhan EJ, Kahl MD, Martinovic D, Mayasich J, Tuominen T, Villeneuve DL, Ankley GT (2011) Screening complex effluents for estrogenic activity with the T47D-KBluc cell bioassay: assay optimization and comparison with in vivo responses in fish. Environ Toxicol Chem 30:439–445

    CAS  Google Scholar 

  155. Maggioni S, Balaguer P, Chiozzotto C, Benfenati E (2013) Screening of endocrine-disrupting phenols, herbicides, steroid estrogens, and estrogenicity in drinking water from the waterworks of 35 Italian cities and from PET-bottled mineral water. Environ Sci Pollut Res 20:1649–1660

    CAS  Google Scholar 

  156. Suzuki G, Tue NM, Malarvannan G, Sudaryanto A, Takahashi S, Tanabe S, Sakai S, Brouwer A, Uramaru N, Kitamura S, Taldgami H (2013) Similarities in the endocrine-disrupting potencies of indoor dust and flame retardants by using human osteosarcoma (U2OS) cell-based reporter gene assays. Environ Sci Technol 47:2898–2908

    CAS  Google Scholar 

  157. Van der Linden SC, Heringa MB, Man HY, Sonneveld E, Puijker LM, Brouwer A, Van der Burg B (2008) Detection of multiple hormonal activities in wastewater effluents and surface water, using a panel of steroid receptor CALUX bioassays. Environ Sci Technol 42:5814–5820

    Google Scholar 

  158. Blankvoort BMG, Rodenburg RJT, Murk AJ, Koeman JH, Schilt R, Aarts J (2005) Androgenic activity in surface water samples detected using the AR-LUX assay: indications for mixture effects. Environ Toxicol Pharmacol 19:263–272

    CAS  Google Scholar 

  159. Bellet V, Hernandez-Raquet G, Dagnino S, Seree L, Pardon P, Bancon-Montiny C, Fenet H, Creusot N, Ait-Aissa S, Cavailles V, Budzinski H, Antignac JP, Balaguer P (2012) Occurrence of androgens in sewage treatment plants influents is associated with antagonist activities on other steroid receptors. Water Res 46:1912–1922

    CAS  Google Scholar 

  160. Schriks M, van Leerdam JA, van der Linden SC, van der Burg B, van Wezel AP, de Voogt P (2010) High-resolution mass spectrometric identification and quantification of glucocorticoid compounds in various wastewaters in The Netherlands. Environ Sci Technol 44:4766–4774

    CAS  Google Scholar 

  161. Jugan ML, Levy-Bimbot M, Pomerance M, Tamisier-Karolak S, Blondeau JP, Levi Y (2007) A new bioluminescent cellular assay to measure the transcriptional effects of chemicals that modulate the alpha-1 thyroid hormone receptor. Toxicol in Vitro 21:1197–1205

    CAS  Google Scholar 

  162. Jugan ML, Oziol L, Bimbot M, Huteau V, Tamisier-Karolak S, Blondeau JP, Levi Y (2009) In vitro assessment of thyroid and estrogenic endocrine disruptors in wastewater treatment plants, rivers and drinking water supplies in the greater Paris area (France). Sci Total Environ 407:3579–3587

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Sayler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xu, T., Close, D., Smartt, A., Ripp, S., Sayler, G. (2014). Detection of Organic Compounds with Whole-Cell Bioluminescent Bioassays. In: Thouand, G., Marks, R. (eds) Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 1. Advances in Biochemical Engineering/Biotechnology, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43385-0_4

Download citation

Publish with us

Policies and ethics