Eye Pathology pp 197-232 | Cite as


  • Claudia Auw-Haedrich
  • Peter Meyer
  • Rita Van Ginderdeuren


Glaucoma or a too high intraocular pressure causes damage of the optic nerve and diminished vision. Glaucoma occurs in most cases due to reduction of the aqueous humour outflow via the trabecular meshwork. Various aetiologies are known and were illustrated as subtopics in the following chapter. Primary open-angle glaucoma is the most often diagnosed glaucoma type which shows microscopical changes of the trabecular meshwork especially the uveal part while macroscopically the angle seems to be open, hence the name. There are secondary open-angle glaucomas with materials like pigment or pseudoexfoliation material blocking the aqueous outflow. Pretrabecular hindrances like scars following inflammation, bleeding, angle trauma, neovascularisation or congenital anomalies have the same effect with resulting increased ocular pressure and optic nerve damage. A second large group of glaucoma is the closed-angle glaucoma which can be due to anatomical reasons or secondary blockage of the aqueous flow from the posterior to the anterior chamber and secondary narrowing of the anterior chamber angle.


Aqueous Humour Optic Nerve Head Ciliary Body Trabecular Meshwork Lamina Cribrosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Moses RA. A graphic analysis of aqueous humor dynamics. Am J Ophthalmol. 1972;73(5):665–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Naumann GOH. Pathologie des Auges. 1. Aufl. Springer; Berlin Heidelberg. 1980.Google Scholar
  3. 3.
    Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC. Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2007;48(7):3161–77.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Pena JD, Varela HJ, Ricard CS, Hernandez MR. Enhanced tenascin expression associated with reactive astrocytes in human optic nerve heads with primary open angle glaucoma. Exp Eye Res. 1999;68(1):29–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Flocks M. The anatomy of the trabecular meshwork as seen in tangential section. AMA Arch Ophthalmol. 1956;56(5):708–18.PubMedCrossRefGoogle Scholar
  6. 6.
    Murphy CG, Yun AJ, Newsome DA, Alvarado JA. Localization of extracellular proteins of the human trabecular meshwork by indirect immunofluorescence. Am J Ophthalmol. 1987;104(1):33–43.PubMedCrossRefGoogle Scholar
  7. 7.
    Gong HY, Trinkaus-Randall V, Freddo TF. Ultrastructural immunocytochemical localization of elastin in normal human trabecular meshwork. Curr Eye Res. 1989;8(10):1071–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Fine BS, Yanoff M, Stone RA. A clinicopathologic study of four cases of primary open-angle glaucoma compared to normal eyes. Am J Ophthalmol. 1981;91(1):88–105.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee WR, Doyne L. The pathology of the outflow system in primary and secondary glaucoma. Eye (Lond). 1995;9(Pt 1):1–23.Google Scholar
  10. 10.
    Tripathi RC. Mechanism of the aqueous outflow across the trabecular wall of Schlemm’s canal. Exp Eye Res. 1971;11(1):116–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Wirtschafter JD. Optic nerve axons and acquired alterations in the appearance of the optic disc. Trans Am Ophthalmol Soc. 1983;81:1034–91.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Quigley HA, Green WR. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology. 1979;86(10):1803–30.PubMedCrossRefGoogle Scholar
  13. 13.
    O’Rahilly R. The prenatal development of the human eye. Exp Eye Res. 1975;21(2):93–112.PubMedCrossRefGoogle Scholar
  14. 14.
    Cook CS. Experimental models of anterior segment dysgenesis. Ophthalmic Paediatr Genet. 1989;10(1):33–46.PubMedCrossRefGoogle Scholar
  15. 15.
    Tripathi BJ, Tripathi RC. Neural crest origin of human trabecular meshwork and its implications for the pathogenesis of glaucoma. Am J Ophthalmol. 1989;107(6):583–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Churchill A, Booth A. Genetics of aniridia and anterior segment dysgenesis. Br J Ophthalmol. 1996;80(7):669–73.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Kupfer C, Kaiser-Kupfer MI, Kuwabara T. Histopathology of abnormalities of the anterior chamber with glaucoma. Trans Am Ophthalmol Soc. 1986;84:71–84.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Gould DB, Smith RS, John SWM. Anterior segment development relevant to glaucoma. Int J Dev Biol. 2004;48(8–9):1015–29.PubMedCrossRefGoogle Scholar
  19. 19.
    Idrees F, Vaideanu D, Fraser SG, Sowden JC, Khaw PT. A review of anterior segment dysgeneses. Surv Ophthalmol. 2006;51(3):213–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Reis LM, Semina EV. Genetics of anterior segment dysgenesis disorders. Curr Opin Ophthalmol. 2011;22(5):314–24.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Sowden JC. Molecular and developmental mechanisms of anterior segment dysgenesis. Eye (Lond). 2007;21(10):1310–8.CrossRefGoogle Scholar
  22. 22.
    Ou Y, Caprioli J. Surgical management of pediatric glaucoma. Dev Ophthalmol. 2012;50:157–72.PubMedCrossRefGoogle Scholar
  23. 23.
    Sarfarazi M, Stoilov I. Molecular genetics of primary congenital glaucoma. Eye (Lond). 2000;14(Pt 3B):422–8.CrossRefGoogle Scholar
  24. 24.
    Barkan O. Pathogenesis of congenital glaucoma: gonioscopic and anatomic observation of the angle of the anterior chamber in the normal eye and in congenital glaucoma. Am J Ophthalmol. 1955;40(1):1–11.PubMedCrossRefGoogle Scholar
  25. 25.
    Shields MB. A common pathway for developmental glaucomas. Trans Am Ophthalmol Soc. 1987;85:222–37.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Perry LP, Jakobiec FA, Zakka FR, Walton DS. Newborn primary congenital glaucoma: histopathologic features of the anterior chamber filtration angle. J AAPOS. 2012;16(6):565–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Burian HM, Braley AE, Allen L. External and gonioscopic visibility of the ring of Schwalbe and the trabecular zone; an interpretation of the posterior corneal embryotoxon and the so-called congenital hyaline membranes on the posterior corneal surface. Trans Am Ophthalmol Soc. 1955;1954(52):389–428.Google Scholar
  28. 28.
    Rennie CA, Chowdhury S, Khan J, Rajan F, Jordan K, Lamb RJ UA. The prevalence and associated features of posterior embryotoxon in the general ophthalmic clinic. Eye (Lond). 2005;19(4):396–9.CrossRefGoogle Scholar
  29. 29.
    Sim KT, Karri B, Kaye SB. Posterior embryotoxon may not be a forme fruste of Axenfeld-Rieger’s syndrome. J AAPOS. 2004;8(5):504–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Alward WL. Axenfeld-Rieger syndrome in the age of molecular genetics. Am J Ophthalmol. 2000;130(1):107–15.PubMedCrossRefGoogle Scholar
  31. 31.
    Harissi-Dagher M, Colby K. Anterior segment dysgenesis: Peters anomaly and sclerocornea. Int Ophthalmol Clin. 2008;48(2):35–42.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee H, Khan R, O’Keefe M. Aniridia: current pathology and management. Acta Ophthalmol. 2008;86(7):708–15.PubMedCrossRefGoogle Scholar
  33. 33.
    Margo CE. Congenital aniridia: a histopathologic study of the anterior segment in children. J Pediatr Ophthalmol Strabismus. 1983;20(5):192–8.PubMedGoogle Scholar
  34. 34.
    Leske MC, Connell AM, Schachat AP, Hyman L. The Barbados Eye Study. Prevalence of open angle glaucoma. Arch Ophthalmol. 1994;112(6):821–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Mitchell P, Smith W, Attebo K, Healey PR. Prevalence of open-angle glaucoma in Australia. The Blue Mountains Eye Study. Ophthalmology. 1996;103(10):1661–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–7.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Allingham RR, Liu Y, Rhee DJ. The genetics of primary open-angle glaucoma: a review. Exp Eye Res. 2009;88(4):837–44.PubMedCrossRefGoogle Scholar
  38. 38.
    Fan BJ, Wiggs JL. Glaucoma: genes, phenotypes, and new directions for therapy. J Clin Invest. 2010;120(9):3064–72.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Alvarado J, Murphy C, Polansky J, Juster R. Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci. 1981;21(5):714–27.PubMedGoogle Scholar
  40. 40.
    Grierson I, Howes RC, Wang Q. Age-related changes in the canal of Schlemm. Exp Eye Res. 1984;39(4):505–12.PubMedCrossRefGoogle Scholar
  41. 41.
    Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology. 1984;91(6):564–79.PubMedCrossRefGoogle Scholar
  42. 42.
    Rohen JW, Witmer R. Electron microscopic studies on the trabecular meshwork in glaucoma simplex. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1972;183(4):251–66.PubMedCrossRefGoogle Scholar
  43. 43.
    Pary-Van Ginderdeuren P, Kaimbo Wa Kaimbo D, Goethals M, Missotten L. Differences in the trabecular meshwork between Belgian and Congolese patients with open-angle glaucoma. Bull Soc Belge Ophtalmol. 1997;267:183–90.PubMedGoogle Scholar
  44. 44.
    Rohen JW, Lütjen-Drecoll E, Flügel C, Meyer M, Grierson I. Ultrastructure of the trabecular meshwork in untreated cases of primary open-angle glaucoma (POAG). Exp Eye Res. 1993;56(6):683–92.PubMedCrossRefGoogle Scholar
  45. 45.
    Tektas O-Y, Lütjen-Drecoll E. Structural changes of the trabecular meshwork in different kinds of glaucoma. Exp Eye Res. 2009;88(4):769–75.PubMedCrossRefGoogle Scholar
  46. 46.
    Allingham RR, de Kater AW, Ethier CR. Schlemm’s canal and primary open angle glaucoma: correlation between Schlemm’s canal dimensions and outflow facility. Exp Eye Res. 1996;62(1):101–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Martin MJ, Sommer A, Gold EB, Diamond EL. Race and primary open-angle glaucoma. Am J Ophthalmol. 1985;99(4):383–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Wilson R, Richardson TM, Hertzmark E, Grant WM. Race as a risk factor for progressive glaucomatous damage. Ann Ophthalmol. 1985;17(10):653–9.PubMedGoogle Scholar
  49. 49.
    Leske MC, Wu S-Y, Hennis A, Honkanen R, Nemesure B. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology. 2008;115(1):85–93.PubMedCrossRefGoogle Scholar
  50. 50.
    Sihota R, Lakshmaiah NC, Walia KB, Sharma S, Pailoor J, Agarwal HC. The trabecular meshwork in acute and chronic angle closure glaucoma. Indian J Ophthalmol. 2001;49(4):255–9.PubMedGoogle Scholar
  51. 51.
    Hamanaka T, Kasahara K, Takemura T. Histopathology of the trabecular meshwork and Schlemm’s canal in primary angle-closure glaucoma. Invest Ophthalmol Vis Sci. 2011;52(12):8849–61.PubMedCrossRefGoogle Scholar
  52. 52.
    He M, Foster PJ, Johnson GJ, Khaw PT. Angle-closure glaucoma in East Asian and European people. Different diseases? Eye (Lond). 2006;20(1):3–12.CrossRefGoogle Scholar
  53. 53.
    Sihota R, Goyal A, Kaur J, Gupta V, Nag TC. Scanning electron microscopy of the trabecular meshwork: understanding the pathogenesis of primary angle closure glaucoma. Indian J Ophthalmol. 2012;60(3):183–8.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Flammer J. Glaucoma: a guide for patients, an introduction for care-providers, a quick reference. 3., überarb. A. Hogrefe Verlag GmbH + Co., Bern; 2006.Google Scholar
  55. 55.
    Spencer WH. Ophthalmic pathology: an atlas and textbook. 4. Aufl. Saunders, Philadelphia; 1996.Google Scholar
  56. 56.
    Cashwell LF, Marks WP. Panretinal photocoagulation in the management of neovascular glaucoma. South Med J. 1988;81(11):1364–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Groh MJ, Seitz B, Schumacher S, Naumann GO. Detection of herpes simplex virus in aqueous humor in iridocorneal endothelial (ICE) syndrome. Cornea. 1999;18(3):359–60.PubMedGoogle Scholar
  58. 58.
    Alvarado JA, Underwood JL, Green WR, Wu S, Murphy CG, Hwang DG, et al. Detection of herpes simplex viral DNA in the iridocorneal endothelial syndrome. Arch Ophthalmol. 1994;112(12):1601–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Quigley HA, Forster RF. Histopathology of cornea and iris in Chandler’s syndrome. Arch Ophthalmol. 1978;96(10):1878–82.PubMedCrossRefGoogle Scholar
  60. 60.
    Eagle Jr RC, Font RL, Yanoff M, Fine BS. The iris naevus (Cogan-Reese) syndrome: light and electron microscopic observations. Br J Ophthalmol. 1980;64(6):446–52.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Levy SG, Kirkness CM, Moss J, Ficker L, McCartney AC. The histopathology of the iridocorneal-endothelial syndrome. Cornea. 1996;15(1):46–54.PubMedCrossRefGoogle Scholar
  62. 62.
    Hirst LW, Bancroft J, Yamauchi K, Green WR. Immunohistochemical pathology of the corneal endothelium in iridocorneal endothelial syndrome. Invest Ophthalmol Vis Sci. 1995;36(5):820–7.PubMedGoogle Scholar
  63. 63.
    Zheng X, Shiraishi A, Okuma S, Mizoue S, Goto T, Kawasaki S, et al. n vivo confocal microscopic evidence of keratopathy in patients with pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci. 2011;52(3):1755–61.PubMedCrossRefGoogle Scholar
  64. 64.
    Schlötzer-Schrehardt U, Hammer CM, Krysta AW, Hofmann-Rummelt C, Pasutto F, Sasaki T, Kruse FE, Zenkel M. LOXL1 deficiency in the lamina cribrosa as candidate susceptibility factor for a pseudoexfoliation-specific risk of glaucoma. Ophthalmology. 2012;119(9):1832–43.PubMedCrossRefGoogle Scholar
  65. 65.
    Schlötzer-Schrehardt U, Naumann GOH. Ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol. 2006;141(5):921–37.PubMedCrossRefGoogle Scholar
  66. 66.
    Elhawy E, Kamthan G, Dong CQ, Danias J. Pseudoexfoliation syndrome, a systemic disorder with ocular manifestations. Hum Genomics. 2012;6:22.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Gottanka J, Kuhlmann A, Scholz M, Johnson DH, Lütjen-Drecoll E. Pathophysiologic changes in the optic nerves of eyes with primary open angle and pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci. 2005;46(11):4170–81.PubMedCrossRefGoogle Scholar
  68. 68.
    Farrar SM, Shields MB. Current concepts in pigmentary glaucoma. Surv Ophthalmol. 1993;37(4):233–52.PubMedCrossRefGoogle Scholar
  69. 69.
    Siddiqui Y, Ten Hulzen RD, Cameron JD, Hodge DO, Johnson DH. What is the risk of developing pigmentary glaucoma from pigment dispersion syndrome? Am J Ophthalmol. 2003;135(6):794–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Campbell DG. Pigmentary dispersion and glaucoma. A new theory. Arch Ophthalmol. 1979;97(9):1667–72.PubMedCrossRefGoogle Scholar
  71. 71.
    Murphy CG, Johnson M, Alvarado JA. Juxtacanalicular tissue in pigmentary and primary open angle glaucoma. The hydrodynamic role of pigment and other constituents. Arch Ophthalmol. 1992;110(12):1779–85.PubMedCrossRefGoogle Scholar
  72. 72.
    Gottanka J, Johnson DH, Grehn F, Lütjen-Drecoll E. Histologic findings in pigment dispersion syndrome and pigmentary glaucoma. J Glaucoma. 2006;15(2):142–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Kupfer C, Kuwabara T, Kaiser-Kupfer M. The histopathology of pigmentary dispersion syndrome with glaucoma. Am J Ophthalmol. 1975;80(5):857–62.PubMedCrossRefGoogle Scholar
  74. 74.
    Mandelkorn RM, Hoffman ME, Olander KW, Zimmerman TJ, Harsha D. Inheritance and the pigmentary dispersion syndrome. Ophthalmic Paediatr Genet. 1985;6(1–2):325–31.PubMedGoogle Scholar
  75. 75.
    STANKOVIC I. A contribution to the knowledge of the heredity of pigment glaucoma. Klin Monbl Augenheilkd Augenarztl Fortbild. 1961;139:165–74.PubMedGoogle Scholar
  76. 76.
    Lascaratos G, Shah A, Garway-Heath DF. The genetics of pigment dispersion syndrome and pigmentary glaucoma. Surv Ophthalmol. 2013;58(2):164–75.PubMedCrossRefGoogle Scholar
  77. 77.
    Regenbogen LS, Naveh-Floman N. Glaucoma in Fuchs’ heterochromic cyclitis associated with congenital Horner’s syndrome. Br J Ophthalmol. 1987;71(11):844–9.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Wilhelmus KR, Grierson I, Watson PG. Histopathologic and clinical associations of scleritis and glaucoma. Am J Ophthalmol. 1981;91(6):697–705.PubMedCrossRefGoogle Scholar
  79. 79.
    Jones NP. Fuchs’ heterochromic uveitis: an update. Surv Ophthalmol. 1993;37(4):253–72.PubMedCrossRefGoogle Scholar
  80. 80.
    Campbell DG, Essigmann EM. Hemolytic ghost cell glaucoma. Further studies. Arch Ophthalmol. 1979;97(11):2141–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Ellant JP, Obstbaum SA. Lens-induced glaucoma. Doc Ophthalmol. 1992;81(3):317–38.PubMedCrossRefGoogle Scholar
  82. 82.
    Epstein DL. Diagnosis and management of lens-induced glaucoma. Ophthalmology. 1982;89(3):227–30.PubMedCrossRefGoogle Scholar
  83. 83.
    Barnhorst D, Meyers SM, Myers T. Lens-induced glaucoma 65 years after congenital cataract surgery. Am J Ophthalmol. 1994;118(6):807–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Kee C, Lee S. Lens particle glaucoma occurring 15 years after cataract surgery. Korean J Ophthalmol. 2001;15(2):137–9.PubMedGoogle Scholar
  85. 85.
    Lim MC, Doe EA, Vroman DT, Rosa Jr RH, Parrish 2nd RK. Late onset lens particle glaucoma as a consequence of spontaneous dislocation of an intraocular lens in pseudoexfoliation syndrome. Am J Ophthalmol. 2001;132(2):261–3.PubMedCrossRefGoogle Scholar
  86. 86.
    Liu JC, Ball SF. Nevus of Ota with glaucoma: report of three cases. Ann Ophthalmol. 1991;23(8):286–9.PubMedGoogle Scholar
  87. 87.
    Armaly MF, Becker B. Intraocular pressure response to topical corticosteroids. Fed Proc. 1965;24(6):1274–8.PubMedGoogle Scholar
  88. 88.
    Becker B. Intraocular pressure response to topical corticosteroids. Invest Ophthalmol. 1965;4:198–205.PubMedGoogle Scholar
  89. 89.
    Cubey RB. Glaucoma following the application of corticosteroid to the skin of the eyelids. Br J Dermatol. 1976;95(2):207–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Zugerman C, Saunders D, Levit F. Glaucoma from topically applied steroids. Arch Dermatol. 1976;112(9):1326.PubMedCrossRefGoogle Scholar
  91. 91.
    Urban Jr RC, Dreyer EB. Corticosteroid-induced glaucoma. Int Ophthalmol Clin. 1993;33(2):135–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Cibis G. 2008-2009 Basic and clinical science course, section 2: Fundamentals and principles of ophthalmology. Revised. American Academy of Ophthalmology; San Francisco, 2008.Google Scholar
  93. 93.
    Armaly MF. Effect of corticosteroids on intraocular pressure and fluid dynamics. I. The effect of dexamethasone in the normal eye. Arch Ophthalmol. 1963;70:482–91.PubMedCrossRefGoogle Scholar
  94. 94.
    Armaly MF. Effect of corticosteroids on intraocular pressure and fluid dynamics. II. The effect of dexamethasone in the glaucomatous eye. Arch Ophthalmol. 1963;70:492–9.PubMedCrossRefGoogle Scholar
  95. 95.
    BECKER B, MILLS DW. Corticosteroids and intraocular pressure. Arch Ophthalmol. 1963;70:500–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Carnahan MC, Goldstein DA. Ocular complications of topical, peri-ocular, and systemic corticosteroids. Curr Opin Ophthalmol. 2000;11(6):478–83.PubMedCrossRefGoogle Scholar
  97. 97.
    Razeghinejad MR, Katz LJ. Steroid-induced iatrogenic glaucoma. Ophthalmic Res. 2012;47(2):66–80.PubMedCrossRefGoogle Scholar
  98. 98.
    Tripathi RC, Parapuram SK, Tripathi BJ, Zhong Y, Chalam KV. Corticosteroids and glaucoma risk. Drugs Aging. 1999;15(6):439–50.PubMedCrossRefGoogle Scholar
  99. 99.
    Lam DSC, Fan DSP, Ng JSK, Yu CBO, Wong CY, Cheung AYK. Ocular hypertensive and anti-inflammatory responses to different dosages of topical dexamethasone in children: a randomized trial. Clin Experiment Ophthalmol. 2005;33(3):252–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Tawara A, Tou N, Kubota T, Harada Y, Yokota K. Immunohistochemical evaluation of the extracellular matrix in trabecular meshwork in steroid-induced glaucoma. Graefes Arch Clin Exp Ophthalmol. 2008;246(7):1021–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Wordinger RJ, Clark AF. Effects of glucocorticoids on the trabecular meshwork: towards a better understanding of glaucoma. Prog Retin Eye Res. 1999;18(5):629–67.PubMedCrossRefGoogle Scholar
  102. 102.
    Zhuo YH, He Y, Leung KW, Hou F, Li YQ, Chai F. Dexamethasone disrupts intercellular junction formation and cytoskeleton organization in human trabecular meshwork cells. Mol Vis. 2010;16:61–71.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Wolff SM, Zimmerman LE. Chronic secondary glaucoma. Associated with retrodisplacement of iris root and deepening of the anterior chamber angle secondary to contusion. Am J Ophthalmol. 1962;54:547–63.PubMedCrossRefGoogle Scholar
  104. 104.
    Mooney D. Angle recession and secondary glaucoma. Br J Ophthalmol. 1973;57(8):608–12.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Claudia Auw-Haedrich
    • 1
  • Peter Meyer
    • 2
  • Rita Van Ginderdeuren
    • 3
  1. 1.Histology Lab, Eye CenterUniversity FreiburgFreiburgGermany
  2. 2.Division of Histology LabAugenspital BaselBaselSwitzerland
  3. 3.Department of Ophthalmology and PathologyUZ LeuvenLeuvenBelgium

Personalised recommendations