Skip to main content

Investigating Adhesion Proteins by Single Cell Force Spectroscopy

  • Conference paper
  • First Online:
Book cover Novel Approaches for Single Molecule Activation and Detection

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

  • 793 Accesses

Abstract

The ability to sense and measure adhesion forces by using force spectroscopy techniques has opened new perspectives in the field of mechanobiology. Single-cell force spectroscopy enables to directly measure interactive forces of single living cell with extracellular environment (i.e., cell, proteins and tissue) with extremely high resolution (single-protein level). Cell adhesion processes rely on the interaction of adhesion proteins with their environment. Cells sense and recognize the specific forces that are generated by the interaction with the environment, and transduce them into biochemical signals by which the cells evolve, move and grow. Single-cell force spectroscopy is the ideal tool to measure these forces and investigate the cellular response from its origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Müller DJ and Dufrêne YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 21:461–469

    Google Scholar 

  2. Kondra S, Laishram J, Ban J, Migliorini E, Di Foggia V, Lazzarino M, Torre V, Ruaro ME (2009) Integration of confocal and atomnic force microscopy images. J Neuroscience Meth 177:94–107

    Google Scholar 

  3. Ban J, Migliorini E, Di Foggia V, Lazzarino M, Ruaro ME, Torre V (2011) Fragmentation as a mechanism for growth cone pruning and degeneration. Stem Cells Dev 20:1031–1041

    Google Scholar 

  4. Lasalvia M, Perna G, Mezzenga E, Migliorini E, Lazzarino M, L'Abbate N, Capozzi V (2011) Atomic force microscopy investigation of morphological changes in living keratinocytes treated with HgCl2 at not cytotoxic doses. J Microscopy 243:40–46

    Google Scholar 

  5. Polano M, Bek A, Benetti F, Lazzarino M, Legname G (2009) Structural insights into alternate aggregated prion protein forms source. J Mol Biol 393:1033–1042

    Google Scholar 

  6. Müller DJ, Janovjak H, Lehto T, Kuerschner L, Anderson K (2002) Observing structure, function and assembly of single proteins by AFM. Prog Biophys Mol Biol 79:1–43

    Google Scholar 

  7. Nordin D, Donlon L, Frankel D (2012) Characterising single fibronectin-integrin complexes. Soft Matter 8:6151–6160

    Google Scholar 

  8. Müller DJ, Helenius J, Alsteens D, Dufrêne YF (2009) Force probing surfaces of living cells to molecular resolution. Nat Chem Biol 5:383–390

    Google Scholar 

  9. Raman PS, Alves CS, Wirtz D, Konstantopoulos K (2011) Single-molecule binding of CD44 to fibrin versus P-selectin predicts their distinct shear-dependent interactions in cancer. J Cell Sci 124:1903–1910

    Google Scholar 

  10. Raab A, Han W, Badt D, Smith-Gill S-J, Lindsay SM, Schindler H, Hinterdorfer P (1999) Antibody recognition imaging by force microscopy. Nat Biotechnol 17:901–905

    Google Scholar 

  11. Hinterdorfer P and Dufrêne YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355

    Google Scholar 

  12. Puech P-H, Poole K, Knebel D, Müller DJ (2006) A new technical approach to quantify cell-cell adhesion forces by AFM. Ultramicroscopy 106:637–644

    Google Scholar 

  13. Helenius J, Heisenberg C-P, Gaub HE, Müller DJ (2008) Single-cell force spectroscopy. J Cell Sci 121:1785–1791

    Google Scholar 

  14. Friedrichs J, Legate KR, Schubert R, Bharadwaj M, Werner C, Müller DJ, Benoit M (2013) A practical guide to quantify cell adhesion using single-cell force spectroscopy. Methods 60:169–178

    Google Scholar 

  15. Manzanares M-V, Webb DJ, Horwitz AR (2005) Cell migration at a glance. J Cell Sci 118:4917–4919F

    Google Scholar 

  16. Hynes RO (1992) Integrins: Versatility, modulation and signaling in cell adhesion. Cell 69:11–25

    Google Scholar 

  17. Huttenlocher A and Horwitz AR (2011) Integrings in cell migration. Cold Spring Harb Perspect Biol 3:a0055074

    Google Scholar 

  18. Campbell ID and Humphries MJ (2011) Integrin structure, activation and interactions. Cold Spring Harb Perspect Biol 3:a004994

    Google Scholar 

  19. García AJ and gallant ND (2003) "Stick and Grip": measurement system and quantitative analyses of integrin-mediated cell adhesion strength. Cell Biochem Biophys 39:61–74

    Google Scholar 

  20. Garcia AJ, Ducheyne P, Boettinger D (1997) Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials. Biomaterials 18:1091–1098

    Google Scholar 

  21. Gallant ND, Michael KE, Garcia AJ (2005) Cell Adhesion Strengthening: Contributions of Adhesive area, integrin binding and focal adhesion assembly. Mol Biol Cell 16:4329–4340

    Google Scholar 

  22. Owen GRH, Meredith DO, Gwynn I, Richards RG (2005) Focal adhesion quantification- A new assay of material biocompatibility? Review European Cells and Materials 9:85–96

    Google Scholar 

  23. Hills EC, Mustafa YYG, Bennett J, Siamantouras E, Liu K-K, Squires PE (2012) Calcium-sensing receptor activation increases cell-cell adhesion and β-cell function. Cell Physiol Biochem 30:575–586

    Google Scholar 

  24. Mack PJ, Kaazempur-Mofrad MR, Karcher H, Lee RT, Kamm RD (2004) Force-induced focal adhesion translocation: effects of force amplitude and frequency. Am J Physiol Cell Physiol 287:C954–C962

    Google Scholar 

  25. Estevez M, Fernandez-Ulibarri I, Martinez E, Egeac G and Samitiera J (2010) Changes in the internal organizzation of the cell by microstructured substrates Soft Matter 6:582–590

    Google Scholar 

  26. Bakker GJ, Eich C, Torreno-Pina JA, Diez-Ahedoa R, Perez-Samper G, Van Zanten TS, Figdor CG, Cambi A, and Garcia-Parajo MF (2012) Lateral mobility of individual integrin nanoclusters orchestrates the onset for leukocyte adhesion. PNAS 109:4869–4874

    Google Scholar 

  27. Franz CM and Müller DJ (2005) Analysing focal adhesion structure by atomic force microscopy. J Cell Sci 118:5315–5323

    Google Scholar 

  28. Dufrêne YF and Pelling AE (2013) Force nanoscopy of cell mechanics and cell adhesion. Nanoscale 5:4094–4104

    Google Scholar 

  29. Baumgartner W, Hinterdorfer P, Ness W, Raab, Vestweber D, Scindler H and Drenckhahn (2000) Cadherin interaction probed by atomic force microscopy. PNAS 97:4005–4010

    Google Scholar 

  30. Wojcikiewicz EP, Abdulreda MH, Zhang X, Moy VT (2006) Force spectroscopy of LFA-1 and its ligand ICAM-1 ICAM-2. Biomacromolecules 7:3188–3195

    Google Scholar 

  31. Provenzano PP and Keely PJ (2011) Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci 124:1195–1205

    Google Scholar 

  32. Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev 11:512–522

    Google Scholar 

  33. Lama G, Papi M, Angelucci C, Maulucci G, Sica G, De Spirito M (2013) Leuprorelin acetate long-lasting effects on GnRH receptors of prasttae cancer cells: an atomic force microscopy study of agonist/receptor interaction. PlosOne 8:e52530

    Google Scholar 

  34. Puntheeranurak T, Neundlinger I, Kinne RKH, Hinterdorfer P (2011) Single molecule recognition force spectroscopy of trasmembrane transporters on living cells. Nat Protocols 6:1443–1452

    Google Scholar 

  35. Hutter J and Bechhoefer J (1993) Calibration of atomic force microscopy tips. Rev Sci Instrum 64:1868–1873

    Google Scholar 

  36. Panorchan P, Thompson MS, Davis KJ, Tseng Y, Konstantopoulos K, Wirtz D (2005) Single-molecule analysis of cadherin-mediated cell-cell adhesion. J Cell Sci 119:66–74

    Google Scholar 

  37. Hoffmann SC, Cohnen A, Ludwig T, Watzl C (2011) 2B4 engagement mediates rapid LFA-1 and actin-dependent NK cell adhesion to tumor cell as measured by single cell force spectroscopy. J Immunol 186:2757–2764

    Google Scholar 

  38. Lim TS, Hao Goh JK, Mortellaro A, Lim CT, Hämmerling GJ, Ricciardi-Castagnoli P (2012) CD80 and CD86 differentially regulate mechanical interactions of T-cells with antigen-presenting dendritic cells and B-cells. PlosOne 7:e45185

    Google Scholar 

  39. Evans  EA and Calderwood DA (2007) Forces and bond dynamics in cell adhesion. Sci 316:1148–1153

    Google Scholar 

  40. Sherer NM (2013) Long-distance relationships: do membrane nanotubes regulate cell-cell communication and disease progression? Mol Biol Cell 24:1095–1098

    Google Scholar 

  41. Evans E and Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555

    Google Scholar 

  42. Davis DM and Sowinski S (2008) Membrane nanotubes dynamic long-distance connections between animal cells. Nat Rev Mol Cell Biol 9:431–436

    Google Scholar 

  43. Wojcikiewicz EP, Zhang X, Moy VT (2003) Force and compliance measurements on living cells using atomic force microscopy (AFM). Biol Proced Online 6:1–9

    Google Scholar 

  44. Tulla M, Helenius J, Jokinen J, Taubenberger A, Müller DJ, Heino J (2008) TPA primes α2β1 integrins for cell adhesion. FEBS letters 582:3520–3524

    Google Scholar 

  45. Benoit M, Gabriel D, Gerisch G and Gaub HE (2000) Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol 2:313–317

    Google Scholar 

  46. Hoffmann S, Hosseini BH, Hecker M, Louban I, Bulbuc N, Garbi N, Wabnitz GH, Samsag Y, Spatz JP, Hämmerling GJ (2011) Single cell force spectroscopy of T cells recognizing a myelin-derived peptide on antigen presenting cells. Immunol Lett 136:13–20

    Google Scholar 

  47. Friedrichs J, Helenius J, Müller DJ (2010) Stimulated single-cell force spectroscopy to quantify cell adhesion receptor crosstalk. Proteomics 10:1455–1462

    Google Scholar 

  48. Hills CE, Jin T, Siamantouras E, Liu I K-K, Jefferson KP, Squires PE (2013) "Special K" and a loss of cell-to-cell adhesion in proximal tubule-derived epithelial cells: modulation of the adherens junctions complex by ketamine. PlosOne 8:e71819

    Google Scholar 

  49. Taubenberger A, Cisneros DA, Friedrichs J, Puech P-H, Müller DJ, Franz CM (2007) Revealing early steps of 21 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Mol Biol Cell 18:1634–1644

    Google Scholar 

  50. Yilmaz M and Christofori G (2010) Mechanism of motility in metastasizing cells. Mol Cancer Res 8:629–642

    Google Scholar 

  51. Sariisik E, Docheva D, Padula D, Popov C, Opfer J, Schieker M, Clausen-Schaumann H, Benoit M (2013) Probing the interaction forces of prostate cancer cells with collagen I and bone marrow derived stem cells on the single cell level. PlosOne 8:e57706

    Google Scholar 

  52. Taubenberger AV, Quent VM, Thibaudeau L, Clements JA, Hutmacher DW (2013) Delineating breast cancer cell interactions with engineered bone microenvironments. J Bone Miner Res 28:1399–1411

    Google Scholar 

  53. Canale C, Petrelli A, Salerno M, Diaspro A, Dante S (2013) A new quantitative experimental approach to investigate single cell adhesion on  multifunctional substrates. Biosens Bioelectron 48:172–179

    Google Scholar 

  54. Migliorini E, Ban J, Grenci G, Andolfi L, Pozzato A, Tormen M, Torre V, Lazzarino M (2013) Nanomechanics controls neuronal precursors adhesion and differentiation. Biotechnol Bioeng 110:2301–2310

    Google Scholar 

  55. Bertoncini P, Le Chevalier S, Lavenus S, Layrolle P and Louarn G (2012) Early adhesion of human mesenchymal stem cells on TiO2 surfaces studied by single-cell force spectroscopy measurements. J Mol Recogn 25:262–269

    Google Scholar 

  56. Stewart MP, Helenius J, Toyoda Y, Ramanathan SP, Müller DJ, Hyman AA (2011) Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nat 469:226–230

    Google Scholar 

  57. Favre M, Polesel-Maris J, Overstolz T, Niedermann P, Dasen S, Gruener S, Ischer R, Vettinger P, Liley M, Heinzelmann H, Meister A (2011) Parallel AFM imaging and force spectroscopy using two-dimensional probe arrays for application in cell biology. J Mol Recogn 24:4446–4452

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Andolfi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andolfi, L., Lazzarino, M. (2014). Investigating Adhesion Proteins by Single Cell Force Spectroscopy. In: Benfenati, F., Di Fabrizio, E., Torre, V. (eds) Novel Approaches for Single Molecule Activation and Detection. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43367-6_8

Download citation

Publish with us

Policies and ethics