Fast Force Clamp in Optical Tweezers: A Tool to Study the Kinetics of Molecular Reactions

  • Pasquale Bianco
  • Lorenzo Bongini
  • Luca Melli
  • Giulia Falorsi
  • Luca Salvi
  • Dan Cojoc
  • Vincenzo Lombardi
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)


A dual-laser optical tweezers has been developed to study the mechanics of motor proteins or DNA filaments. A bead attached to one end of the specimen is trapped in the confocal point of the two lasers, while the other end is connected to a three-dimensional piezo-stage. The instrument can be operated under computer control either as a length clamp, applying length steps or ramps, or as a force clamp, applying abrupt changes in load of fixed magnitude and direction. The dynamic range of the instrument (0.5–75,000 nm in length and 0.5–200 pN in force) and the speed of the force feedback permit recording the kinetics of molecular and intermolecular phenomena such as the overstretching transition in double-stranded DNA (ds-DNA) or the generation of force and shortening by an ensemble of myosin motors pulling on an actin filament. We demonstrate the performance of the system in recording for the first time the transient kinetics of the ds-DNA overstretching transition, which allows the determination of the underlying reaction parameters, such as rate constants and distance to the transitions state.


Actin Filament Force Feedback Flow Chamber Viscous Drag Optical Tweezer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Allemand JF, Bensimon D, Croquette V (2003) Stretching DNA and RNA to probe their interactions with proteins. Curr Opin Struct Biol 13:266CrossRefGoogle Scholar
  2. 2.
    Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156CrossRefADSGoogle Scholar
  3. 3.
    Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288CrossRefADSGoogle Scholar
  4. 4.
    Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618CrossRefADSGoogle Scholar
  5. 5.
    Bianco P, Bongini L, Melli L, Dolfi M, Lombardi V (2011) Piconewton-millisecond force steps reveal the transition kinetics and mechanism of the double-stranded DNA elongation. Biophys J 101:866CrossRefGoogle Scholar
  6. 6.
    Block SM, Goldstein LS, Schnapp BJ (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348:348CrossRefADSGoogle Scholar
  7. 7.
    Bryant Z, Stone MD, Gore J, Smith SB, Cozzarelli NR, Bustamante C (2003) Structural transitions and elasticity from torque measurements on DNA. Nature 424:338CrossRefADSGoogle Scholar
  8. 8.
    Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265:1599CrossRefADSGoogle Scholar
  9. 9.
    Bustamante C, Bryant Z, Smith SB (2003) Ten years of tension: single-molecule DNA mechanics. Nature 421:423CrossRefADSGoogle Scholar
  10. 10.
    Capitanio M, Canepari M, Cacciafesta P, Lombardi V, Cicchi R, Maffei M, Pavone FS, Bottinelli R (2006) Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin. Proc Natl Acad Sci USA, vol 103Google Scholar
  11. 11.
    Capitanio M, Canepari M, Maffei M, Beneventi D, Monico C, Vanzi F, Bottinelli R, Pavone FS (2012) Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke. Nat Methods 9:1013CrossRefGoogle Scholar
  12. 12.
    Clausen-Schaumann H, Rief M, Tolksdorf C, Gaub HE (2000) Mechanical stability of single DNA molecules. Biophys J 78:1997CrossRefGoogle Scholar
  13. 13.
    Cluzel P, Lebrun A, Heller C, Lavery R, Viovy JL, Chatenay D, Caron F (1996) DNA: an extensible molecule. Science 271:792CrossRefADSGoogle Scholar
  14. 14.
    Cocco S, Yan J, Leger JF, Chatenay D, Marko JF (2004) Overstretching and force-driven strand separation of double-helix DNA. Phys Rev E Stat Nonlin Soft Matter Phys 70:011910-1CrossRefADSGoogle Scholar
  15. 15.
    Danilowicz C, Limouse C, Hatch K, Conover A, Coljee VW, Kleckner N, Prentiss M (2009) The structure of DNA overstretched from the 5'5' ends differs from the structure of DNA overstretched from the 3'3' ends. Proc Natl Acad Sci USA 106:13196CrossRefADSGoogle Scholar
  16. 16.
    Elms PJ, Chodera JD, Bustamante CJ, Marqusee S (2012) Limitations of constant-force-feedback experiments. Biophys J 103:1490CrossRefGoogle Scholar
  17. 17.
    Evans E (2001) Probing the relation between force - lifetime - and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct 30:105CrossRefGoogle Scholar
  18. 18.
    Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113CrossRefADSGoogle Scholar
  19. 19.
    Fu H, Chen H, Marko JF, Yan J (2010) Two distinct overstretched DNA states. Nucleic Acids Res 38:5594CrossRefGoogle Scholar
  20. 20.
    Fu H, Chen H, Zhang X, Qu Y, Marko JF, Yan J (2011) Transition dynamics and selection of the distinct S-DNA and strand unpeeling modes of double helix overstretching. Nucleic Acids Res 39:3473CrossRefGoogle Scholar
  21. 21.
    Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:284MathSciNetCrossRefMATHADSGoogle Scholar
  22. 22.
    Léger JF, Romano G, Sarkar A, Robert J, Bourdieu L, Chatenay D, Marko JF (1999) Structural Transitions of a Twisted and Stretched DNA Molecule. Phys Rev Lett 83:1066CrossRefADSGoogle Scholar
  23. 23.
    Levinthal C, Crane HR (1956) On the Unwinding of DNA. Proc Natl Acad Sci USA 42:436CrossRefADSGoogle Scholar
  24. 24.
    Liphardt J, Onoa B, Smith SB, Tinoco I Jr, Bustamante C (2001) Reversible unfolding of single RNA molecules by mechanical force. Science 292:733CrossRefADSGoogle Scholar
  25. 25.
    Mallik R, Carter BC, Lex SA, King SJ, Gross SP (2004) Cytoplasmic dynein functions as a gear in response to load. Nature 427:649CrossRefADSGoogle Scholar
  26. 26.
    Mao H, Arias-Gonzalez JR, Smith SB, Tinoco I Jr, Bustamante C (2005) Temperature control methods in a laser tweezers system. Biophys J 89:1308CrossRefGoogle Scholar
  27. 27.
    Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:8759CrossRefADSGoogle Scholar
  28. 28.
    Perkins TT, Dalal RV, Mitsis PG, Block SM (2003) Sequence-dependent pausing of single lambda exonuclease molecules. Science 301:1914CrossRefADSGoogle Scholar
  29. 29.
    Rouzina I, Bloomfield VA (1999) Heat capacity effects on the melting of DNA. 1. General aspects. Biophys J 77:3242CrossRefGoogle Scholar
  30. 30.
    Rouzina I, Bloomfield VA (1999) Heat capacity effects on the melting of DNA. 2. Analysis of nearest-neighbor base pair effects. Biophys J 77:3252CrossRefGoogle Scholar
  31. 31.
    Sarkar A, Leger JF, Chatenay D, Marko JF (2001) Structural transitions in DNA driven by external force and torque. Phys Rev E Stat Nonlin Soft Matter Phys 63:051903-1CrossRefADSGoogle Scholar
  32. 32.
    Shokri L, Marintcheva B, Eldib M, Hanke A, Rouzina I, Williams MC (2008) Kinetics and thermodynamics of salt-dependent T7 gene 2.5 protein binding to single- and double-stranded DNA. Nucleic Acids Res 36:5668CrossRefGoogle Scholar
  33. 33.
    Smith SB, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258:1122CrossRefADSGoogle Scholar
  34. 34.
    Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795CrossRefADSGoogle Scholar
  35. 35.
    Smith SB, Cui Y, Bustamante C (2003) Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol 361:134CrossRefGoogle Scholar
  36. 36.
    Suzuki N, Miyata H, Ishiwata S, Kinosita K Jr (1996) Preparation of bead-tailed actin filaments: estimation of the torque produced by the sliding force in an in vitro motility assay. Biophys J, vol 70Google Scholar
  37. 37.
    Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721CrossRefADSGoogle Scholar
  38. 38.
    Svoboda K, Block SM (1994) Force and velocity measured for single kinesin molecules. Cell 77:773CrossRefGoogle Scholar
  39. 39.
    Thomen P, Bockelmann U, Heslot F (2002) Rotational drag on DNA: a single molecule experiment. Phys Rev Lett 88:248102-1CrossRefADSGoogle Scholar
  40. 40.
    van Mameren J, Gross P, Farge G, Hooijman P, Modesti M, Falkenberg M, Wuite GJ, Peterman EJ (2009) Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging. Proc Natl Acad Sci USA 106:18231CrossRefADSGoogle Scholar
  41. 41.
    Veigel C, Bartoo ML, White DC, Sparrow JC, Molloy JE (1998) The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys J 75:1424CrossRefGoogle Scholar
  42. 42.
    Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184CrossRefADSGoogle Scholar
  43. 43.
    Wang MD, Yin H, Landick R, Gelles J, Block SM (1997) Stretching DNA with optical tweezers. Biophys J 72:1335CrossRefGoogle Scholar
  44. 44.
    Wenner JR, Williams MC, Rouzina I, Bloomfield VA (2002) Salt dependence of the elasticity and overstretching transition of single DNA molecules. Biophys J 82:3160CrossRefGoogle Scholar
  45. 45.
    Whitelam S, Pronk S, Geissler PL (2008) There and (slowly) back again: entropy-driven hysteresis in a model of DNA overstretching. Biophys J 94:2452CrossRefGoogle Scholar
  46. 46.
    Williams MC, Wenner JR, Rouzina I, Bloomfield VA (2001) Effect of pH on the overstretching transition of double-stranded DNA: evidence of force-induced DNA melting. Biophys J 80:874CrossRefGoogle Scholar
  47. 47.
    Williams MC, Wenner JR, Rouzina I, Bloomfield VA (2001) Entropy and heat capacity of DNA melting from temperature dependence of single molecule stretching. Biophys J 80:1932CrossRefGoogle Scholar
  48. 48.
    Yin H, Wang MD, Svoboda K, Landick R, Block SM, Gelles J (1995) Transcription against an applied force. Science 270:1653CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pasquale Bianco
    • 1
  • Lorenzo Bongini
    • 1
  • Luca Melli
    • 1
  • Giulia Falorsi
    • 1
  • Luca Salvi
    • 1
  • Dan Cojoc
    • 2
  • Vincenzo Lombardi
    • 1
  1. 1.Laboratory of Physiology, Department of BiologyUniversity of FlorenceFlorenceItaly
  2. 2.IOM—National Research CouncilTriesteItaly

Personalised recommendations