Skip to main content

Tip-Assisted Optical Nanoscopy for Single-Molecule Activation and Detection

  • Conference paper
  • First Online:

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

Abstract

In this paper, we discuss on tip-assisted optical techniques that represent a set of modern and promising tools for investigation of surfaces which combine the ultimate performances of scanning probe microscopies in achieving unprecedented lateral and vertical resolution, with the highly informative contribution of optical spectroscopy in terms of material characterization and chemical analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Novotny L, Sanchez EJ, Xie XS (1998) Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams. Ultramicroscopy 71:21

    Article  Google Scholar 

  2. Sanchez EJ, Novotny L, Xie XS (1999) Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys Rev Lett 82:4014

    Article  ADS  Google Scholar 

  3. Kawata S, Inouye Y, Kataoka T, Okamoto T (2002) CH 4: Apertureless Near-Field Probes. In: Kawata S, Ohtsu M, Irie M (eds) Nano-optics. Springer series in optical sciences, vol 84. Springer, Berlin, p 75

    Google Scholar 

  4. Courjon D (2003) Near field microscopy and near field optics. Imperial College Press, London

    Book  Google Scholar 

  5. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. De Angelis F, Das G, Candeloro P, Patrini M, Galli M, Bek A, Lazzarino M, Maksymov I, Liberale C, Andreani LC, Di Fabrizio E (2010) Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat Nanotechnol 5:67

    Article  ADS  Google Scholar 

  7. Bailo E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37:921

    Article  Google Scholar 

  8. Hartschuh A (2008) Tip-enhanced near-field optical microscopy. Angew Chem Int Ed 47:8178

    Article  Google Scholar 

  9. Domke KF, Pettinger B (2010) Studying surface chemistry beyond the diffraction limit: 10 years of TERS. Chem Phys Chem 11:1365

    Google Scholar 

  10. Pahlow S, Marz A, Seise B, Hartmann K, Freitag I, Kammer E, Bohme R, Deckert V, Weber K, Cialla D, Popp J (2012) Bioanalytical application of surface-and tip-enhanced Raman spectroscopy. Eng Life Sci 12(2):131

    Article  Google Scholar 

  11. Schmid T, Opilik L, Blum C, Zenobi R (2013) Nanoscale chemical imaging using tip-enhanced raman spectroscopy: A critical review. Angew Chem Int Ed 52:5940

    Article  Google Scholar 

  12. Bailo E, Deckert V (2008) Tip-enhanced Raman spectroscopy of single RNA strands: Towards a novel direct-sequencing method. Angew Chem Int Edit 47(9):1658

    Article  Google Scholar 

  13. De Angelis F, Patrini M, Das G, Maksymov I, Galli M, Businaro L, Andreani LC, Di Fabrizio E (2008) A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. Nano Lett 8(8):2321

    Article  ADS  Google Scholar 

  14. Ropers C, Neacsu CC, Elsaesser T, Albrecht M, Raschke MB, Lienau C (2007) Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source. Nano Lett 7(9):2784

    Article  ADS  Google Scholar 

  15. Berweger S, Atkin JM, Olmon RL, Raschke MB (2010) Adiabatic tip-plasmon focusing for nano-raman spectroscopy. J Phys Chem Lett 1:3427

    Article  Google Scholar 

  16. Berweger S, Atkin JM, Olmon RL, Raschke MB (2012) Light on the tip of a needle: Plasmonic nanofocusing for spectroscopy on the nanoscale. J Phys Chem Lett 3:945

    Article  Google Scholar 

  17. Synge EH (1928) A suggested method for extending microscopic resolution into the ultra-microscopic region. Phil Mag 6:356

    Google Scholar 

  18. O’Keefe JA (1956) Resolving power of visible light. J Opt Soc Am 46:359

    Article  Google Scholar 

  19. Ash EA, Nicholls G (1972) Super-resolution Aperture Scanning Microscope. Nature 237:510

    Article  ADS  Google Scholar 

  20. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40:178

    Article  ADS  Google Scholar 

  21. Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy: Image recording with resolution λ/20. Appl Phys Lett 44:651

    Article  ADS  Google Scholar 

  22. Lewis A, Isaacson M, Harootunian A, Murray A (1984) Development of a 500 Å spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures. Ultramicroscopy 13:227

    Article  Google Scholar 

  23. Weber WH, Ford GW (1981) Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation. Opt Lett 6:122

    Article  MATH  ADS  Google Scholar 

  24. Wessel J (1985) Surface-enhanced optical microscopy. J Opt Soc Am B 2:1538

    Article  ADS  Google Scholar 

  25. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163

    Article  ADS  Google Scholar 

  26. Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318:131

    Article  ADS  Google Scholar 

  27. Farahani JN, Pohl DW, Eisler HJ, Hecht B (2005) Single quantum dot coupled to a scanning optical antenna: A tunable superemitter. Phys Rev Lett 95:017402

    Article  ADS  Google Scholar 

  28. Esteban R, Vogelgesang R, Kern K (2007) Tip-substrate interaction in optical near-field microscopy. Phys Rev B 75:195410

    Article  ADS  Google Scholar 

  29. Zhang W, Cui X, Yeo BS, Schmid T, Hafner C, Zenobi R (2007) Nanoscale roughness on metal surfaces can increase tip-enhanced raman scattering by an order of magnitude. Nano Lett 7:1401

    Article  ADS  Google Scholar 

  30. Bouhelier A, Renger J, Beversluis MR, Novotny L (2003) Plasmon-coupled tip-enhanced near-field optical microscopy. J Microsc 210:220

    Article  MathSciNet  Google Scholar 

  31. Bouhelier A, Novotny L (2007) Near-field optical excitation and detection of surface plasmons. In: Brongersma ML, Kik PG (eds) Surface plasmon nanophotonics. Springer series in optical sciences, vol 131. Springer, Berlin, p 139

    Google Scholar 

  32. Ren B, Picardi G, Pettinger B (2004) Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching. Rev Sci Instrum 75:837

    Article  ADS  Google Scholar 

  33. Steidtner J, Pettinger B (2008) Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys Rev Lett 100:236101

    Article  ADS  Google Scholar 

  34. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Metallized tip amplification of near-field Raman scattering. Opt Commun 183:333

    Article  ADS  Google Scholar 

  35. Yeo B-S, Zhang W, Vannier C, Zenobi R (2006) Enhancement of Raman signals with silver-coated tips. Appl Spectrosc 60(10):1142

    Article  ADS  Google Scholar 

  36. Yeo B-S, Schmid T, Zhang W, Zenobi R (2007) Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips. Anal Bioanal Chem 387:2655

    Article  Google Scholar 

  37. Hayazawa N, Yano T, Kawata S (2012) Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone. J Raman Spectrosc 43:1177

    Google Scholar 

  38. Wang N, Cai Y, Zhang RQ (2008) Growth of nanowires. Mat Sci Eng R 60:1

    Article  Google Scholar 

  39. Jabeen F, Grillo V, Rubini S, Martelli F (2008) Self-catalyzed growth of GaAs nanowires on cleaved Si by molecular beam epitaxy. Nanotechnology 19(27):275711

    Article  ADS  Google Scholar 

  40. Becker M, Sivakov V, Andra G, Geiger R, Schreiber J, Hoffmann S, Michler J, Milenin AP, Werner P, Christiansen SH (2007) The SERS and TERS effects obtained by gold droplets on top of Si nanowires. Nano Lett 7(1):75

    Article  ADS  Google Scholar 

  41. Becker M, Sivakov V, Gosele U, Stelzner T, Andra G, Reich HJ, Hoffmann S, Michler J, Christiansen SH (2008) Nanowires enabling signal-enhanced nanoscale Raman spectroscopy. Small 4(4):398

    Article  Google Scholar 

  42. Jenke MG, Lerose D, Niederberger C, Michler J, Christiansen S, Utke I (2011) Toward local growth of individual nanowires on three-dimensional microstructures by using a minimally invasive catalyst templating method. Nano Lett 11:4213

    Article  ADS  Google Scholar 

  43. Engstrom DS, Savu V, Zhu X, Bu IYY, Milne WI, Brugger J, Boggild P (2011) High throughput nanofabrication of silicon nanowire and carbon nanotube tips on AFM probes by stencil-deposited catalysts. Nano Lett 11:1568

    Article  ADS  Google Scholar 

  44. Babadjanyan AJ, Margaryan NL, Nerkararyan KhV (2000) Superfocusing of surface polaritons in the conical structure. J Appl Phys 87(8):3785

    Article  ADS  Google Scholar 

  45. Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93:137404

    Article  ADS  Google Scholar 

  46. Johnson TW, Lapin ZJ, Beams R, Lindquist NC, Rodrigo SG, Novotny L, Oh S-H (2012) Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids. ACS Nano 6(10):9168

    Article  Google Scholar 

  47. Bao W, Melli M, Caselli N, Riboli F, Wiersma DS, Staffaroni M, Choo H, Ogletree DF, Aloni S, Bokor J, Cabrini S, Intonti F, Salmeron MB, Yablonovitch E, Schuck PJ, Weber-Bargioni A (2012) Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 338:1317

    Article  ADS  Google Scholar 

  48. Bao W, Staffaroni M, Bokor J, Salmeron MB, Yablonovitch E, Cabrini S, Weber-Bargioni A, Schuck PJ (2013) Plasmonic near-field probes: A comparison of the campanile geometry with other sharp tips. Opt Express 21(7):8166

    Article  ADS  Google Scholar 

  49. Hartschuh A, Anderson N, Novotny L (2003) Near-field Raman spectroscopy using a sharp metal tip. J Microsc 210(3):234

    Article  MathSciNet  Google Scholar 

  50. Rasmussen A, Deckert V (2006) Surface- and tip-enhanced Raman scattering of DNA components. J Raman Spectrosc 37:311

    Article  ADS  Google Scholar 

  51. Bek A, De Angelis F, Das G, Di Fabrizio E, Lazzarino M (2011) Tip enhanced Raman scattering with adiabatic plasmon focusing tips. Micron 42:313

    Article  Google Scholar 

  52. Sadiq D, Shirdel J, Lee JS, Selishcheva E, Park N, Lienau C (2011) Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles. Nano Lett 11:1609

    Article  ADS  Google Scholar 

  53. Pettinger B, Domke KF, Zhang D, Picardi G, Schuster R (2009) Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement. Surf Sci 603:1335

    Article  ADS  Google Scholar 

  54. Sackrow M, Stanciu C, Lieb MA, Meixner AJ (2008) Imaging nanometre-sized hot spots on smooth Au films with high-resolution tip-enhanced luminescence and Raman near-field optical microscopy. Chem Phys Chem 9:316

    Google Scholar 

  55. Ward DR, Halas NJ, Ciszek JW, Tour JM, Wu Y, Nordlander P, Natelson D (2008) Simultaneous measurements of electronic conduction and raman response in molecular junctions. Nano Lett 8(3):919

    Article  ADS  Google Scholar 

  56. Maximiano RV, Beams R, Novotny L, Jorio A, Cancado LG (2012) Mechanism of near-field Raman enhancement in two-dimensional systems. Phys Rev B 85:235434

    Article  ADS  Google Scholar 

  57. Hayazawa N, Motohashi M, Saito Y, Ishitobi H, Ono A, Ichimura T, Verma P, Kawata S (2007) Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy. J Raman Spectrosc 38:684

    Article  ADS  Google Scholar 

  58. Hermann P, Hecker M, Chumakov D, Weisheit M, Rinderknecht J, Shelaev A, Dorozhkin P, Eng LM (2011) Imaging and strain analysis of nano-scale SiGe structures by tip-enhanced Raman spectroscopy. Ultramicroscopy 111:1630

    Article  Google Scholar 

  59. Hoffmann GG, de With G, Loos J (2008) Micro-Raman and tip-enhanced Raman spectroscopy of carbon allotropes. Macromol Symp 265:1

    Article  Google Scholar 

  60. Cancado LG, Hartschuh A, Novotny L (2009) Tip-enhanced Raman spectroscopy of carbon nanotubes. J Raman Spectrosc 40:1420

    Article  ADS  Google Scholar 

  61. Snitka V, Rodrigues RD, Lendraitis V (2011) Novel gold cantilever for nano-Raman spectroscopy of graphene. Microelectron Eng 88:2759

    Article  Google Scholar 

  62. Stadler J, Schmid T, Zenobi R (2011) Nanoscale chemical imaging of single-layer graphene. ACS Nano 5(10):8442

    Article  Google Scholar 

  63. Anderson N, Hartschuh A, Novotny L (2007) Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. Nano Lett 7(3):577

    Article  ADS  Google Scholar 

  64. Berweger S, Neacsu CC, Mao Y, Zhou H, Wong SS, Raschke MB (2009) Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nat Nanotechnol 4:496

    Article  ADS  Google Scholar 

  65. Wang X, Zhang D, Braun K, Egelhaaf H-J, Brabec CJ, Meixner AJ (2010) High-Resolution spectroScopic mapping of the chemical contrast from nanometer domains in P3HT:PCBM organic blend films for Solar-Cell applications. Adv Funct Mater 20:492

    Article  Google Scholar 

  66. Zhang D, Domke KF, Pettinger B (2010) Tip-enhanced Raman spectroscopic studies of the hydrogen bonding between adenine and thymine adsorbed on Au (111). Chem Phys Chem 11:1662

    Google Scholar 

  67. Treffer R, Lin X, Bailo E, Deckert-Gaudig T, Deckert V (2011) Distinction of nucleobases − a tip-enhanced Raman approach. Beilstein J Nanotechnol 2:628

    Article  Google Scholar 

  68. Cialla D, Deckert-Gaudig T, Budich C, Laue M, Moller R, Naumann D, Deckert V, Popp J (2009) Raman to the limit: Tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus. J Raman Spectrosc 40:240

    Article  ADS  Google Scholar 

  69. Hermann P, Hermelink A, Lausch V, Holland G, Moller L, Bannert N, Naumann D (2011) Evaluation of tip-enhanced Raman spectroscopy for characterizing different virus strains. Analyst 136:1148

    Article  ADS  Google Scholar 

  70. Bohme R, Cialla D, Richter M, Rosch P, Popp J, Deckert V (2010) Biochemical imaging below the diffraction limit - probing cellular membrane related structures by tip-enhanced Raman spectroscopy (TERS). J Biophoton 3(7):455

    Article  Google Scholar 

  71. Opilik L, Bauer T, Schmid T, Stadler J, Zenobi R (2011) Nanoscale chemical imaging of segregated lipid domains using tip-enhanced Raman spectroscopy. Phys Chem Chem Phys 13:9978

    Article  Google Scholar 

  72. Richter M, Hedegaard M, Deckert-Gaudig T, Lampen P, Deckert V (2011) Laterally resolved and direct spectroscopic evidence of nanometer-sized lipid and protein domains on a single cell. Small 7(2):209

    Article  Google Scholar 

  73. Bohme R, Mkandawire M, Krause-Buchholz U, Rosch P, Rodel G, Poppac J, Deckert V (2011) Characterizing cytochrome c states - TERS studies of whole mitochondria. Chem Commun 47:11453

    Article  Google Scholar 

  74. Wood BR, Bailo E, Khiavi MA, Tilley L, Deed S, Deckert-Gaudig T, McNaughton D, Deckert V (2011) Tip-enhanced raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte. Nano Lett 11:1868

    Article  ADS  Google Scholar 

  75. Neugebauer U, Rosch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V (2006) On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. Chem Phys Chem 7:1428

    Google Scholar 

  76. Naumenko D, Snitka V, Serviene E, Bruzaite I, Snopok B (2013) In vivo characterization of protein uptake by yeast cell envelope: Single cell AFM imaging and μ-tip-enhanced Raman scattering study. Analyst 138:5371

    Article  ADS  Google Scholar 

  77. Schmid T, Yeo B-S, Leong G, Stadler J, Zenobi R (2009) Performing tip-enhanced Raman spectroscopy in liquids. J Raman Spectrosc 40:1392

    Article  ADS  Google Scholar 

  78. Pettinger B, Schambach P, Villagomez CJ, Scott N (2012) Tip-enhanced raman spectroscopy: Near-fields acting on a few molecules. Ann Rev Phys Chem 63:379

    Article  ADS  Google Scholar 

  79. Downes A, Salter D, Elfick A (2008) Simulations of tip-enhanced optical microscopy reveal atomic resolution. J Microsc 229:184

    Article  MathSciNet  Google Scholar 

  80. Yano T, Verma P, Saito Y, Ichimura T, Kawata S (2009) Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres. Nat Photonics 3:473

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Lazzarino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Naumenko, D., Cassese, D., Lazzarino, M., Bek, A. (2014). Tip-Assisted Optical Nanoscopy for Single-Molecule Activation and Detection. In: Benfenati, F., Di Fabrizio, E., Torre, V. (eds) Novel Approaches for Single Molecule Activation and Detection. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43367-6_5

Download citation

Publish with us

Policies and ethics