Skip to main content

The Use of Light-Sensitive Organic Semiconductors to Manipulate Neuronal Activity

  • Conference paper
  • First Online:
Novel Approaches for Single Molecule Activation and Detection

Abstract

Organic semiconducting polymers display several beneficial properties to interface with biological substrates. These materials have been employed successfully for cellular interfaces such as neural probes, biosensors, and actuators for drug release. Recent experiments demonstrate that they can also be used to optically modulate the membrane potential of cultured neurons and astrocytes. Moreover, application of an organic light-sensitive semiconductor has been shown to restore light sensitivity in degenerated retinas, suggesting the use of conjugated polymers as active materials in retinal prosthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pierce S, Giese AC (1957) Photoreversal of ultraviolet injury to frog and crab nerves. J Cell Comp Physiol 49:303–317

    Article  Google Scholar 

  2. Fork RL (1971) Laser stimulation of nerve cells in Aplysia. Science 171:907–908

    Article  ADS  Google Scholar 

  3. Reece PJ, Dholakia K, Thomas RC, Cottrell GA (2008) Green laser light (532 nm) activates a chloride current in the C1 neuron of Helix aspersa. Neurosci Lett 433:265–269

    Article  Google Scholar 

  4. Hirase H, Nikolenko V, Goldberg JH, Yuste R (2002) Multiphoton stimulation of neurons. J Neurobiol 51:237–247

    Article  Google Scholar 

  5. Duprat F, Guillemare E, Romey G, Fink M, Lesage F, Lazdunski M, Honore E (1995) Susceptibility of cloned K+ channels to reactive oxygen species. Proc Natl Acad Sci USA 92:11796–11800

    Article  ADS  Google Scholar 

  6. Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275:C1–C24

    Google Scholar 

  7. Wells J, Kao C, Jansen ED, Konrad P, Mahadevan-Jansen A (2005) Application of infrared light for in vivo neural stimulation. J Biomed Opt 10:064003

    Article  Google Scholar 

  8. Wells J, Kao C, Konrad P, Milner T, Kim J, Mahadevan-Jansen A, Jansen ED (2007) Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys J 93:2567–2580

    Article  Google Scholar 

  9. Shapiro MG, Homma K, Villarreal S, Richter C-P, Bezanilla F (2012) Infrared light excites cells by changing their electrical capacitance. Nat Commun 3:736

    Article  ADS  Google Scholar 

  10. Ellis-Davies GCR (2007) Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat Methods 4:619–628

    Article  Google Scholar 

  11. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945

    Article  ADS  Google Scholar 

  12. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  ADS  Google Scholar 

  13. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    Article  Google Scholar 

  14. Bartels E, Wassermann NH, Erlanger BF (1971) Photochromic activators of the acetylcholine receptor. Proc Natl Acad Sci 68:1820–1823

    Article  ADS  Google Scholar 

  15. Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH (2004) Light-activated ion channels for remote control of neuronal firing. Nat Neurosci 7:1381–1386

    Article  Google Scholar 

  16. Chambers JJ, Banghart MR, Trauner D, Kramer RH (2006) Light-induced depolarization of neurons using a modified Shaker K(+) channel and a molecular photoswitch. J Neurophysiol 96:2792–2796

    Article  Google Scholar 

  17. Volgraf M, Gorostiza P, Numano R, Kramer RH, Isacoff EY, Trauner D (2006) Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2:47–52

    Article  Google Scholar 

  18. Lanzani G (2012) The photophysics behind photovoltaics and photonics. Wiley-VCH, Germany

    Google Scholar 

  19. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474–1476

    Article  ADS  Google Scholar 

  20. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science (80-) 270:1789–1791

    Google Scholar 

  21. Nelson J (2004) The physics of solar cells. Imperial College Press, London

    Google Scholar 

  22. Antognazza MR, Ghezzi D, Musitelli D, Garbugli M, Lanzani G (2009) A hybrid solid-liquid polymer photodiode for the bioenvironment. Appl Phys Lett 94:243501

    Article  ADS  Google Scholar 

  23. Lanzarini E, Antognazza MR, Biso M, Ansaldo A, Laudato L, Bruno P, Metrangolo P, Resnati G, Ricci D, Lanzani G (2012) Polymer-based photocatalytic hydrogen generation. J Phys Chem C 116:10944–10949

    Article  Google Scholar 

  24. Gautam V, Bag M, Narayan KS (2010) Dynamics of bulk polymer heterostructure/electrolyte devices. J Phys Chem Lett 1:3277–3282

    Article  Google Scholar 

  25. Bystrenova E, Jelitai M, Tonazzini I, N. Lazar A, Huth M, Stoliar P, Dionigi C, Cacace MG, Nickel B, Madarasz E, Biscarini F (2008) Neural networks grown on organic semiconductors. Adv Funct Mater 18:1751–1756

    Google Scholar 

  26. Cramer T, Chelli B, Murgia M, Barbalinardo M, Bystrenova E, de Leeuw DM, Biscarini F (2013) Organic ultra-thin film transistors with a liquid gate for extracellular stimulation and recording of electric activity of stem cell-derived neuronal networks. Phys Chem Chem Phys 15:3897–3905

    Article  Google Scholar 

  27. Abidian MR, Ludwig KA, Marzullo TC, Martin DC, Kipke DR (2009) Interfacing conducting polymer nanotubes with the central nervous system: chronic neural recording using Poly(3,4-ethylenedioxythiophene) nanotubes. Adv Mater 21:3764–3770

    Article  Google Scholar 

  28. Cui X, Lee VA, Raphael Y, Wiler JA, Hetke JF, Anderson DJ, Martin DC (2001) Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J Biomed Mater Res 56:261–272

    Article  Google Scholar 

  29. Cui X, Wiler J, Dzaman M, Altschuler RA, Martin DC (2003) In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials 24:777–787

    Article  Google Scholar 

  30. Khodagholy D, Doublet T, Gurfinkel M, Quilichini P, Ismailova E, Leleux P, Herve T, Sanaur S, Bernard C, Malliaras GG (2011) Highly conformable conducting polymer electrodes for in vivo recordings. Adv Mater 23:H268–H272

    Article  Google Scholar 

  31. Khodagholy D, Rivnay J, Sessolo M, Gurfinkel M, Leleux P, Jimison LH, Stavrinidou E, Herve T, Sanaur S, Owens RM, Malliaras GG (2013) High transconductance organic electrochemical transistors. Nat Commun 4:2133

    ADS  Google Scholar 

  32. Benfenati V, Toffanin S, Bonetti S, Turatti G, Pistone A, Chiappalone M, Sagnella A, Stefani A, Generali G, Ruani G, Saguatti D, Zamboni R, Muccini M (2013) A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Nat Mater 12:672–680

    Article  ADS  Google Scholar 

  33. Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17:345–359

    Article  Google Scholar 

  34. Arshak K, Velusamy V, Korostynska O, Oliwa-Stasiak K, Adley C (2009) Conducting Polymers and their applications to biosensors: emphasizing on foodborne pathogen detection. IEEE Sens J 9:1942–1951

    Article  Google Scholar 

  35. Simon DT, Kurup S, Larsson KC, Hori R, Tybrandt K, Goiny M, Jager EWH, Berggren M, Canlon B, Richter-Dahlfors A (2009) Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nat Mater 8:742–746

    Article  ADS  Google Scholar 

  36. Richardson RT, Wise AK, Thompson BC, Flynn BO, Atkinson PJ, Fretwell NJ, Fallon JB, Wallace GG, Shepherd RK, Clark GM, O’Leary SJ (2009) Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials 30:2614–2624

    Article  Google Scholar 

  37. Ghezzi D, Antognazza MR, Dal Maschio M, Lanzarini E, Benfenati F, Lanzani G (2011) A hybrid bioorganic interface for neuronal photoactivation. Nat Commun 2:166

    Article  ADS  Google Scholar 

  38. Benfenati V, Martino N, Antognazza MR, Pistone A, Toffanin S, Ferroni S, Lanzani G, Muccini M (2014) Photostimulation of whole-cell conductance in primary rat neocortical astrocytes mediated by organic semiconducting thin films. Adv Healthc Mater 3:392–399

    Google Scholar 

  39. Masland RH (2001) The fundamental plan of the retina. Nat Neurosci 4:877–886

    Article  Google Scholar 

  40. Ghezzi D, Antognazza MR, Maccarone R, Bellani S, Lanzarini E, Martino N, Mete M, Pertile G, Bisti S, Lanzani G, Benfenati F (2013) A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat Photonics 7:400–406

    Article  ADS  Google Scholar 

  41. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A, Sowden JC, Ali RR (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444:203–207

    Article  ADS  Google Scholar 

  42. Pearson RA, Barber AC, Rizzi M, Hippert C, Xue T, West EL, Duran Y, Smith AJ, Chuang JZ, Azam SA, Luhmann UFO, Benucci A, Sung CH, Bainbridge JW, Carandini M, Yau K-W, Sowden JC, Ali RR (2012) Restoration of vision after transplantation of photoreceptors. Nature 485:99–103

    Article  ADS  Google Scholar 

  43. Koch S, Sothilingam V, Garcia Garrido M, Tanimoto N, Becirovic E, Koch F, Seide C, Beck SC, Seeliger MW, Biel M, Mühlfriedel R, Michalakis S (2012) Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Hum Mol Genet 21:4486–4496

    Article  Google Scholar 

  44. Bi A, Cui J, Ma Y-P, Olshevskaya E, Pu M, Dizhoor AM, Pan Z-H (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33

    Article  Google Scholar 

  45. Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, Groner AC, Cabuy E, Forster V, Seeliger M, Biel M, Humphries P, Paques M, Mohand-Said S, Trono D, Deisseroth K, Sahel JA, Picaud S, Roska B (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413–417

    Article  ADS  Google Scholar 

  46. Polosukhina A, Litt J, Tochitsky I, Nemargut J, Sychev Y, De Kouchkovsky I, Huang T, Borges K, Trauner D, Van Gelder RN, Kramer RH (2012) Photochemical restoration of visual responses in blind mice. Neuron 75:271–282

    Article  Google Scholar 

  47. Ahuja AK, Dorn JD, Caspi A, McMahon MJ, Dagnelie G, Dacruz L, Stanga P, Humayun MS, Greenberg RJ (2011) Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br J Ophthalmol 95:539–543

    Article  Google Scholar 

  48. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel V-P, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 278:1489–1497

    Article  Google Scholar 

  49. Martino N, Ghezzi D, Benfenati F, Lanzani G, Antognazza MR (2013) Organic semiconductors for artificial vision. J Mater Chem B 1:3768

    Article  Google Scholar 

  50. Antognazza MR, Scherf U, Monti P, Lanzani G (2007) Organic-based tristimuli colorimeter. Appl Phys Lett 90:163509

    Article  ADS  Google Scholar 

  51. Gegenfurtner KR, Sharpe LT (2001) Color vision: from genes to perception. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duco Endeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Endeman, D. et al. (2014). The Use of Light-Sensitive Organic Semiconductors to Manipulate Neuronal Activity. In: Benfenati, F., Di Fabrizio, E., Torre, V. (eds) Novel Approaches for Single Molecule Activation and Detection. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43367-6_10

Download citation

Publish with us

Policies and ethics