Skip to main content

Statistical Properties of Laser Speckle Patterns

  • Chapter
Laser Speckle and Related Phenomena

Part of the book series: Topics in Applied Physics ((TAP,volume 9))

Abstract

Since speckle plays an important role in many physical phenomena, it is essential to fully understand its statistical properties. Starting from the basic idea of a random walk in the complex plane, we derive the first-order statistics of the complex amplitude, intensity and phase of speckle. Sums of speckle patterns are also considered, the addition being either on an amplitude or on an intensity basis, with partially polarized speckle being a special case. Next we consider the sum of a speckle pattern and a coherent background, deriving the first-order probability density functions of intensity and phase. Attention is then turned to second-order statistics. The autocorrelation function and power spectral density are derived, both for a free-space propagation geometry and for an imaging geometry. In some cases the recorded speckle pattern may be spatially integrated or blurred, and accordingly consideration is given to the statistics of such patterns. Finally, the relationship between detailed surface structure and the resulting speckle pattern is explored, with emphasis on the effects of the surface autocorrelation function and the effects of finite surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.D. Rigden, E.I. Gordon: Proc. I.R.E. 50, 2367 (1962)

    Google Scholar 

  2. B.M. Oliver: Proc. IEEE 51, 220 (1963)

    Article  Google Scholar 

  3. E. Verdet: Ann. Scientif. l’Ecole Normale Supérieure 2, 291 (1865)

    MathSciNet  Google Scholar 

  4. J.W. Strutt : (Lord Rayleigh) Phil. Mag. 10, 73 (1880)

    Article  Google Scholar 

  5. M. von Laue: Sitzungsber. Akad. Wiss. (Berlin) 44, 1144 (1914)

    Google Scholar 

  6. M. von Laue: Mitt. Physik Ges. (Zürich) 18, 90 (1916);

    Google Scholar 

  7. M. von Laue: Verhandl. Deut. Phys. Ges. 19, 19 (1917).

    Google Scholar 

  8. P. E. Green: In Radar Astronomy, ed. by J. V. Evans and T. Hagfors (McGraw Hill Book Co., New York 1968)

    Google Scholar 

  9. E.N. Leith: Proc. IEEE 59, 1305 (1971)

    Article  Google Scholar 

  10. P.S. Green: Acoustical Holography, Vol. 5 (Plenum Press, New York, N.Y. 1974)

    Book  Google Scholar 

  11. J. A. Ratcliffe: In Reports on Progress in Physics, Vol. 19, ed. by A.C. Strickland (Physical Society, London 1956)

    Google Scholar 

  12. L. Mandel: Proc. Phys. Soc. 74, 233 (1959)

    Article  ADS  Google Scholar 

  13. D. Middleton: Introduction to Statistical Communication Theory (McGraw Hill Book Co., New York 1960)

    Google Scholar 

  14. W. B. Davenport, W. L. Root: Random Signals and Noise (McGraw Hill Book Co., New York 1958)

    MATH  Google Scholar 

  15. J.W. Goodman: Stanford Electronics Laboratories TR2303–1 (SEL-63–140) (1963)

    Google Scholar 

  16. P. Beckmann, A. Spizzichino: The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon/Macmillan, London, New York 1963)

    MATH  Google Scholar 

  17. K. Pearson: A. Mathematical Theory of Random Migration (Draper’s Company Research Memoirs, Biometric Series III, London 1906)

    Google Scholar 

  18. J.W. Strutt (Lord Rayleigh): Phil. Mag. 37, 321 (1919)

    Google Scholar 

  19. J.W. Goodman: Proc. IEEE 53, 1688 (1965)

    Article  Google Scholar 

  20. J.W. Strutt: Proc. Lond. Math. Soc. 3, 267 (1871)

    Google Scholar 

  21. M. A. Condie: An Experimental Investigation of the Statistics of Diffusely Reflected Coherent Light, Thesis (Dept. of Electr. Engng.) Stanford University, Stanford, Calif. (1966)

    Google Scholar 

  22. J.C. Dainty: Opt. Acta 17, 761 (1970)

    Article  ADS  Google Scholar 

  23. T.S. McKechnie: Optic 39, 258 (1974) and thesis, University of London (1975)

    Google Scholar 

  24. M. Francon: Opt. Acta 20, 1 (1973)

    Article  ADS  Google Scholar 

  25. E. Archbold, A.E. Ennos, P.A. Taylor: In Optical Instruments and Techniques, ed. by J. Home-Dickson (Oriel Press, Newcastle-upon-Tyne 1970)

    Google Scholar 

  26. J. W. Goodman: Opt. Commun. 13, 244 (1975)

    Article  ADS  Google Scholar 

  27. I.S. Reed: IRE Trans. Information Theory IT-8, 194 (1962)

    Article  MATH  Google Scholar 

  28. D.C. Murdoch: Linear Algebra for Undergraduates (John Wiley & Sons, New York 1957)

    MATH  Google Scholar 

  29. R. Barakat: Opt. Acta 20, 729 (1973)

    Article  ADS  Google Scholar 

  30. E. Wolf: Nuovo Cimento 13, 1165 (1959)

    Article  MATH  Google Scholar 

  31. R.C. Jones: J. Opt. Soc. Am. 31, 488, 500 (1941)

    Google Scholar 

  32. J.M. Burch: In Optical Instruments and Techniques ed. by Home-Dickson(Oriel Press, Newcastle-upon Tyne 1970)

    Google Scholar 

  33. J. W. Goodman: J. Opt. Soc. Am 57, 493 (1967)

    Article  ADS  Google Scholar 

  34. D. Vilkomerson: J. Opt. Soc. Am 61, 929 (1971)

    Article  ADS  Google Scholar 

  35. W.H. Lee: J. Opt. Soc. Am. 62, 797 (1972)

    Article  ADS  Google Scholar 

  36. J.C. Dainty: J. Opt. Soc. Am. 62, 595 (1972)

    Article  Google Scholar 

  37. J.I. Marcum: IRE Trans. Information Theory IT-6, 59 (1960)

    Article  MathSciNet  Google Scholar 

  38. E. Wolf: Proc. Roy. Soc. (London) A 225, 96 (1954)

    Article  ADS  MATH  Google Scholar 

  39. J. W. Goodman: Introduction to Fourier Optics (McGraw-Hill Book Co., New York 1968)

    Google Scholar 

  40. M. Born, E. Wolf: Principles of Optics, 4th ed. (Pergamon Press, London, New York 1970)

    Google Scholar 

  41. L.I. Goldfischer: J. Opt. Soc. Am. 55, 247 (1965)

    Article  ADS  Google Scholar 

  42. S. Lowenthal, H.H. Arsenault: J. Opt. Soc. Am. 60, 1478 (1970)

    Article  ADS  Google Scholar 

  43. F. Zernike: Physica 5, 785 (1938)

    Article  ADS  Google Scholar 

  44. S.O. Rice: In Selected Papers on Noise and Stochastic Processes, ed. by N. Wax (Dover Press, New York 1954)

    Google Scholar 

  45. J.C. Dainty: Opt. Acta 18, 327 (1971)

    Article  ADS  Google Scholar 

  46. A.A. Scribot: Opt. Commun. 11, 238 (1974)

    Article  ADS  Google Scholar 

  47. J. Meixner, F.W. Schaefke: Mathieusche Funktionen und Sphäroidfunktionen (Springer Berlin, Göttingen, Heidelberg 1954)

    Book  Google Scholar 

  48. D. Slepian: Bell Syst. Tech. 37, 163 (1958)

    Article  MathSciNet  Google Scholar 

  49. B.R. Frieden: In Progress in Optics, Vol. IX, ed. by E. Wolf (North-Holland Publishing Co., Amsterdam 1971)

    Google Scholar 

  50. R.B. Crane: J. Opt. Soc. Am. 60, 1658 (1970)

    Article  ADS  Google Scholar 

  51. H.H. Arsenault: J. Opt. Soc. Am. 61, 1425 (1971)

    Article  Google Scholar 

  52. J.W. Goodman: In Remote Techniques for Capillary Wave Measurement, ed. by K.S. Krishnan and N. A. Peppers (Stanford Research Inst. Rep., Stanford, Calif. 1973)

    Google Scholar 

  53. H. Fuji, T. Asakura: Opt. Commun. 11, 35 (1974)

    Article  ADS  Google Scholar 

  54. H.M. Pederson: Opt. Commun. 12, 156 (1974)

    Article  ADS  Google Scholar 

  55. F. Berny, C. Imbert: Bulletin BNM 11,14 (1973)

    Google Scholar 

  56. M. Abramowitz, I.A. Stegun: Handbook of Mathematical Functions (Dover Publications, Inc., New York 1965)

    Google Scholar 

  57. J. Ohtbutso, T. Asakura: Opt. Commun. 14, 30 (1975)

    Article  ADS  Google Scholar 

  58. G. Schiffner: Dr. dissertation, Technical University of Vienna (1966); also Proc. IEEE 53, 245 (1965)

    Google Scholar 

Download references

Authors

Editor information

J. C. Dainty

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goodman, J.W. (1975). Statistical Properties of Laser Speckle Patterns. In: Dainty, J.C. (eds) Laser Speckle and Related Phenomena. Topics in Applied Physics, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43205-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43205-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43207-5

  • Online ISBN: 978-3-662-43205-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics