Skip to main content

Part of the book series: Topics in Applied Physics ((TAP,volume 9))

Abstract

The random intensity distribution that we now call a speckle pattern (see Fig. 1.1) is formed when fairly coherent light is either reflected from a rough surface or propagates through a medium with random refractive index fluctuations. Such patterns are clearly visible even to the casual observer when highly coherent laser light is used. In general the statistical properties of speckle patterns depend both on the coherence of the incident light and the detailed properties of the random surface or medium, although for perfectly coherent light this dependence on the random scatterer is almost negligible if the scatterer introduces path differences greater than one wavelength. Although we are concerned here with the random speckle patterns produced when visible coherent light is scattered, it should be emphasized that closely related phenomena arise in other regions of the electromagnetic spectrum and also for particles; typical examples are the scattering of X-rays by liquids, radar ‘clutter’ and electron scattering by amorphous carbon films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Newton: Opticks (Reprinted by Dover Press, New York 1952) Book I, Part I, Prop. VIII, Prob. II. (1730).

    Google Scholar 

  2. K. Exner: Sitzungsber. Kaiserl. Akad. Wiss. (Wien) 76, 522 (1877).

    Google Scholar 

  3. K. Exner: Wiedemanns. Ann. Physik 9, 239 (1880).

    Article  ADS  MATH  Google Scholar 

  4. M. von Laue: Sitzungsber. Akad. Wiss. (Berlin) 44, 1144 (1914).

    Google Scholar 

  5. W. J. de Haas: Koninklighe. Acad, van Wetenschager (Amsterdam) 20, 1278 (1918).

    ADS  Google Scholar 

  6. M. von Laue: Mitt. Physik. Ges. (Zürich) 18, 90 (1916)

    Google Scholar 

  7. M. von Laue: Verhandl. Deutsch. Phys. Ges. 19, 19 (1917)

    Google Scholar 

  8. G. Schiffner: Dr. Dissertation, Tech. University, Vienna (1966); and Proc. IEEE 53, 1245 (1965).

    Google Scholar 

  9. P. Hariharan: Optica Acta 19, 791 (1972).

    Article  ADS  Google Scholar 

  10. L.H. Tanner: Appl. Opt. 13, 2026 (1974).

    Article  ADS  Google Scholar 

  11. P. Hariharan: Appl. Opt. 9, 1482 (1970)

    Article  ADS  Google Scholar 

  12. H.A. Knoll: Am. J. Optom. 43, 415 (1966)

    Google Scholar 

  13. R.T. Hennessy, H. Leibowitz: J. Opt. Soc. Am. 60, 1700 (1970)

    Article  Google Scholar 

  14. E. Ingelstam, S. Ragnarsson: Vision Res. 12, 411 (1972)

    Article  Google Scholar 

  15. L. Rocm, A. Fontana: Optica Acta 22, 243 (1974)

    ADS  Google Scholar 

  16. J.D. Briers: Opt. Commun. 13, 324 (1975)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

J. C. Dainty

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dainty, J.C. (1975). Introduction. In: Dainty, J.C. (eds) Laser Speckle and Related Phenomena. Topics in Applied Physics, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43205-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43205-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43207-5

  • Online ISBN: 978-3-662-43205-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics