The Mathematical Theories of the Inelastic Continuum

  • Alfred M. Freudenthal
  • Hilda Geiringer
Part of the Encyclopedia of Physics / Handbuch der Physik book series (HBUP)

Abstract

This article is an attempt to present the current stage of development of the theories of the inelastic continuum. In contrast to the classical theories of elasticity and hydrodynamics, the present status of which is the result of two centuries of extensive research, the theories dealt with in this article are still in a comparatively early stage of development notwithstanding the present steadily increasing volume of contributions.

Keywords

Anisotropy Torque Hexagonal Ductility Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference Books

  1. [1]
    Alfrey, T.: Mechanical behavior of high polymers. New York: Interscience 1948.Google Scholar
  2. [2]
    Arutiunian, N. Ch.: Problems in the theory of creep. Moscow 1952.Google Scholar
  3. [3]
    Colonetti, G.: L’équilibre des corps déformables. Paris: Dunod 1955.Google Scholar
  4. [4]
    Frenkel, J.: Kinetic theory of liquids. Moscow 1943. Engl. transl. New York: Dover 1955.Google Scholar
  5. [5]
    Freudenthal, A. M.: Inelastic behavior of engineering materials and structures. New York: Wiley 1950. German transl. Berlin: VEB 1955.Google Scholar
  6. [6]
    Geiringer, H.: Fondements mathématiques de la théorie des corps plastiques isotropes. Paris 1937.Google Scholar
  7. [7]
    Goldenblatt, I. I.: Problems of the mechanics of deformable bodies. Moscow 1955.Google Scholar
  8. [8]
    Grammel, R. (editor): Deformation and flow of solids. Berlin: Springer 1956.Google Scholar
  9. [9]
    Gross, B.: Mathematical theories of viscoelasticity. Paris: Hermann 1953.Google Scholar
  10. [10]
    Hill, R.: Mathematical theory of plasticity. Oxford: University Press 1950.Google Scholar
  11. [11]
    Hoffman, O., and G. Sachs: Theory of plasticity for engineers. New York 1953.Google Scholar
  12. [12]
    Ilyushin, A. A.: Plasticity. Moscow 1948. French transl. Paris: Eyrolles 1956.Google Scholar
  13. [13]
    Kachanov, L. M.: Theory of Plasticity. Moscow 1956.Google Scholar
  14. [14]
    Kachanov, L. M.: Problems of the theory of creep. Moscow 1949.Google Scholar
  15. [15]
    Kaliski, S.: Dynamic boundary value problems in the theory of elastic and inelastic bodies. Warsaw 1957.Google Scholar
  16. [16]
    Lebenson, L. S.: Elements of the mathematical theory of plasticity. Moscow 1943.Google Scholar
  17. [17]
    Lohr, E.: Mechanik der Festkörper. Berlin: W. de Gruyter & Co. 1952.Google Scholar
  18. [18]
    Mueller, F. H. (editor): Relaxationsverhalten der Materie. Darmstadt: Steinkopff 1953.Google Scholar
  19. [19]
    Nadai, A.: Plasticity. New York: McGraw-Hill 1931.Google Scholar
  20. [20]
    Nadai, A.: Theory of flow and fracture of solids, Vol. 1. New York: McGraw-Hill 1950.Google Scholar
  21. [21]
    Phillips, A.: Introduction to Plasticity. New York: Ronald 1956.Google Scholar
  22. [22]
    Neal, B. G.: Plastic Methods of Structural Analysis. New York: Wiley 1956.Google Scholar
  23. [23]
    Prager, W., and P. G. Hodge: Theory of perfectly plastic solids. New York: Wiley 1951. German transl. Wien: Springer 1954.Google Scholar
  24. [24]
    Prager, W.: Probleme der Plastizitätstheorie. Basel: Birkhäuser 1955.CrossRefGoogle Scholar
  25. [25]
    Rzhanitsin, A. R.: Problems of mechanics of time-deformable systems. Moscow 1949.Google Scholar
  26. [26]
    Sokolovsky, V. V.: Theory of plasticity. Moscow 1946, 1950. Revised German edition, Berlin: VEB 1955-Google Scholar
  27. [27]
    Westergaard, H. M.: Theory of Elasticity and Plasticity. Cambridge: Harvard University Press 1952.Google Scholar
  28. [28]
    Zener, C.: Elasticity and anelasticity of metals. Chicago: Chicago University Press 1948.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1958

Authors and Affiliations

  • Alfred M. Freudenthal
    • 1
  • Hilda Geiringer
    • 2
  1. 1.Civil EngineeringColumbia UniversityNew YorkUSA
  2. 2.CambridgeUSA

Personalised recommendations