Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 35))

  • 41 Accesses

Zusammenfassung

Für den Biochemiker hat die lebendige Zelle drei einzigartige Eigenschaften, die als ein Hauptcharakteristikum des Lebens angesehen werden müssen1:

  1. 1.

    Eine Vielfalt von makro- und mikromolekularen chemischen Verbindungen hat sich in der Zelle zu einer zusammenwirkenden Einheit verbunden.

  2. 2.

    Das Leben in der Zelle wird nur aufrechterhalten durch das stetige Reagieren dieser Stoffe miteinander, durch Auf- und Abbau und durch Beziehungen dieses Stoffwechsels mit der Außenwelt. Der Aufbau, der den Abbau oft überwiegt, kann sich nur durch ständige Stoffzufuhr von außen vollziehen.

  3. 3.

    Dieses dynamische Stoffwechselgeschehen der Zelle, bei dem sich die einzelnen Stoffgruppen immer wieder gegenseitig ergänzen, hat eine große Möglichkeit der Variabilität. Diese wird regiert durch einen wunderbaren, sinnvollen, aber komplizierten Regulations-Mechanismus, auf dessen Wirksamkeit das Leben wesentlich beruht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Albert, A., C. W. Rees and A. J. H. Tomllxsox: The influence of chemical constitution on antibacterial activity. Part Viii. 2-mercaptopyridine-N-oxide and some general observations on metal binding agents. Brit. J. exp. Path. 37, 500 (1956).

    PubMed  CAS  Google Scholar 

  • Allfrey, V. G.: Observations on the mechanism and control of protein synthesis in the cell nucleus. 5. Internat. Kongr. für Biochemie, Moskau 1961. Symposium II, Preprint 140, 1 (1961).

    Google Scholar 

  • Amarasingham, C., and H. E. Umbarger: The effect of glucose on oxalacetic carboxylase in two strains of Escherichia coli. Bact. Proc. 55, 115 (1955).

    Google Scholar 

  • Amoore, J. E.: The permeability of isolated rat-liver mitochondria at 0° to the metabolites pyruvate, succinate, citrate, phosphate, adenosine-5-phosphate and adenosine triphosphate. Biochem. J. 70, 718 (1958).

    PubMed  CAS  Google Scholar 

  • Ashida, J., and M. Imai: Origin of copper resistant cells. Studies on the adaptation of yeast to copper. XV. Bot. Mag. (Tokyo) 69, 560 (1956).

    Google Scholar 

  • Astrachan, L., and E. Volkin: Effects of chloramphenicol on ribonucleic acid metabolism in T2-infected Escherichia coli. Biochim. biophys. Acta 32, 449 (1959).

    CAS  Google Scholar 

  • Bagdasarian, G.: L’influence de la streptomycine sur la production de la penicillinase induite chez B. cereus. Ann. Inst. Pasteur 99, 150 (1960).

    CAS  Google Scholar 

  • Baker, R. S., J. E. Johnson and S. W. Fox: Incorporation of p-fluorophenylalanine into proteins of Lactobacillus arabinosus. Biochim. biophys. Acta 28, 318 (1958).

    CAS  Google Scholar 

  • Balassa, R.: Einige Bedingungen der Ausbildung einer durch Desoxyribonukleinsäuren induzierten niedrigen Streptomycinresistenz bei Rhizobien. Acta microbiol. Acad. Sci. hung. 4, 85 (1957).

    CAS  Google Scholar 

  • Bardarov, S.: Untersuchungen über die Biosynthese der Penicillinase. Arch. Mikrobiol. 29, 143 (1958).

    PubMed  CAS  Google Scholar 

  • Barker, S. A., E. J. Bourne and O. Theander: Studies of Aspergillus piger. Part V. The enzymic synthesis of a new trisaccharide. J. them. Soc. 1957, P. I I, 2064 (1957).

    Google Scholar 

  • Barnard, E. A., and W. D. Stein: Some relations between enzyme activity, chemical reactivity and urea-induced disorientations in ribonuclease. Biochim. biophys. Acta 37, 371 (1960).

    CAS  Google Scholar 

  • Barner, H. D., and S. S. Cohen: The relation of growth to the lethal damage induced by ultraviolet irradiation in Escherichia coli. J. Bact. 71, 149 (1956).

    PubMed  CAS  Google Scholar 

  • Barner, H. D., and S. S. Cohen: Protein synthesis and Rna turnover in a pyrimidine deficient bacterium. Mit Addendum von D. Kanazir: Addendum: The apparent mutagenicity of thymine deficiency. Biochim. biophys. Acta 30, 12 (1958).

    CAS  Google Scholar 

  • Barnum, C. P., and R. A. Huseby: The intracellular heterogeneity of pentose nucleic acid as evidenced by the incorporation of radiophosphorus. Arch. Biochem. 29, 7 (1950).

    PubMed  CAS  Google Scholar 

  • Barret, J. T., A. D. Larson and R. E. Kallio: The nature of the adaptive lag of Pseudolamas fluorescens toward citrate. J. Bact. 65, 187 (1953).

    Google Scholar 

  • Benzer, S.: Induced synthesis of enzymes in bacteria analysed at the cellular level. Biochim. biophys. Acta 11, 383 (1953).

    CAS  Google Scholar 

  • Bergmann, E. D., and S. Sicher: Mode of action of chloramphenicol. Nature (Lond.) 170, 931 (1952).

    CAS  Google Scholar 

  • Bernheim, F.: Rapid reversal of ethionine inhibition of enzyme induction in Pseudomonas aeruginosa by L- and n-methionine. Proc. Soc. exp. Biol. (N.Y.) 101, 346 (1959).

    CAS  Google Scholar 

  • Bertrand, D., et A. DE Wolf: Le zinc, oligo élément dynamique indispensable à la synthèse de la phosphofructokinase et de la glycéraldéhyde-phosphate déhydrogénase de l’Aspergillus niger. C. R. Acad. Sci. (Paris) 246, 2537 (1958).

    CAS  Google Scholar 

  • Beyer, R. E.: Evidence in support of two adenosin triphosphatase pathways in rat-liver mitochondria. Biochim. biophys. Acta 32, 588 (1959).

    CAS  Google Scholar 

  • Black, A. L., and M. Kleiber: The recovery of norleucine from casein after administering norleucine-3-C14 to intact cows. J. Amer. chem. Soc. 77, 6082 (1955).

    CAS  Google Scholar 

  • Black, S., and N. G. Wright: ß-aspartokinase and ß-aspartiphosphate. J. biol. Chem. 213, 27 (1955).

    PubMed  CAS  Google Scholar 

  • Black, S., and N. G. Wright: Aspartic ß-semialdehyde dehydrogenase and aspartic ß-semialdehyde. J. biol. Chem. 213, 39 (1955).

    PubMed  CAS  Google Scholar 

  • Black, S., and N. G. Wright: Homoserine dehydrogenase. J. biol. Chem. 213, 51 (1955).

    PubMed  CAS  Google Scholar 

  • Bolton, E. T., and H. G. Mandel: The effects of 6-mercaptopurine on biosynthesis in Escherichia coli. J. biol. Chem. 227, 833 (1957).

    PubMed  CAS  Google Scholar 

  • Bonner, D. M., Y. Suyama and J. A. DE Moss: Genetic fine stucture and enzyme formation (Symposium). Fed. Proc. 19, 926 (1960).

    CAS  Google Scholar 

  • Boyer, P. D., H. Lardy and K. MyrbÄCK: The enzymes. 2nd edit.: 4 volumes, vol. I. New York: Academic Press 1959.

    Google Scholar 

  • Boyer, P. D., and M. P. Stulberg: Tracing of the in vivo path from amino acid to protein. Proc. nat. Acad. Sci. (Wash.) 44, 92 (1958).

    CAS  Google Scholar 

  • Bradfield, J. R. G.: Organization of bacterial cytoplasms. In: Bacterial Anatomy. Symp. Soc. gen. Microbiol. 6, 296 (1956).

    Google Scholar 

  • Brawerman, G., and M. YèAs: Incorporation of the amino acid analog tryptazan into the protein of Escherichia coli. Arch. Biochem. 68, 112 (1957).

    PubMed  CAS  Google Scholar 

  • Bresnick, E., S. Singer and G. H. Hitchings: Mechanism of action of 6-azacytosine in bacteria. Biochim. biophys. Acta 37, 251 (1960).

    CAS  Google Scholar 

  • Britten, R. J., R. B. Roberts and E. F. French: Amino acid adsorption and protein synthesis in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 41, 863 (1955).

    CAS  Google Scholar 

  • Brookes, P., A. R. Crathorn and G. D. Hunter: The incorporation of labelled amino acids into protein by isolated cytoplasmic membrans of Bacillus megaterium. Intermediate reactions. Biochem. J. 71, 31 (1959).

    Google Scholar 

  • BuChner, P.: Praktikum der Zellenlehre. Teil 1: Allgemeine Zellen-und Befruchtungslehre (Sammlung naturw. Praktika, Bd. 5 ). Berlin: Gebrüder Borntraeger 1915.

    Google Scholar 

  • Bussard, A., S. Naono, F. Gros et J. Monod: Effets d’un analogue de l’uracile sur les propriétés d’une protéine enzymatique synthétisée en sa présence. C. R. Acad. Sci. (Paris) 250, 4049 (1960).

    CAS  Google Scholar 

  • Campbell, A.: Effect of starvation for glucose during reversion of a long term adapting yeast. J. Bact. 74, 553 (1957).

    PubMed  CAS  Google Scholar 

  • Campbell, A. M., and S. Spiegelman: The growth kinetics of elements necessary for galactozymase formation in “long term adapting” yeasts.C. R.Lab.Carlsberg, Sér. physiol. 26, 13 (1956).

    CAS  Google Scholar 

  • Canellakis, E. S.: Some aspects of the metabolism in vitro of 2-C14-labelled orotic acid, uracil, uridine and uridylic acid. Fed. Proc. 14, 324 (1955).

    Google Scholar 

  • Canellakis, E. S.: Biosynthesis of uracil nucleotides. Fed. Proc. 15, 229 (1956).

    Google Scholar 

  • Canellakis, E. S.: Pyrimidine metabolism. I. Enzymatic pathways of uracil and thymine degradation. J. biol. Chem. 221, 315 (1956).

    CAS  Google Scholar 

  • Canellakis, E. S.: Incorporation of radioactive uridine-5’-monophosphate into ribonucleic acid by soluble mammalian enzymes. Biochim. biophys. Acta 23, 217 (1957).

    CAS  Google Scholar 

  • Chambers, C. W., H. H. Tabak and P. W. Kabler: Effect of Krebs cycle metabolites on the viability of Escherichia coli treated with heat and chlorine. J. Bact. 73, 77 (1957).

    PubMed  CAS  Google Scholar 

  • Chance, B.: Enzyme mechanisms in living cells. In: The mechanism of enzyme action (W. D. Mcelroy and B. Glass, eds.), p. 399. Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Chance, B.: Enzymes in action in living cells: the steady state of reduced pyridine nucleotides. Harvey Lect. 49, 145 (1955).

    Google Scholar 

  • Chance, B., and G. R. Williams: The respiratory chain and oxidative phosphorylation. Advanc. Enzymol. 17, 65 (1956).

    CAS  Google Scholar 

  • Ceantrenne, H.: Nucleic acid metabolism and induced enzyme formation. Rec. Tray. chim. Pays-Bas 77, 586 (1958).

    Google Scholar 

  • Ceantrenne, H.: Newer developments in relation to protein biosynthesis. Ann. Rev. Biochem. 27, 35 (1958).

    Google Scholar 

  • Ceantrenne, H.: Remarques sur l’inhibition de la synthèse des protéines par l’azaguanine. 4th Internat. Congr. Biochem., Vienna 1958, Sympos. 8, 197 (1960).

    Google Scholar 

  • Ceantrenne, H., and S. Devreux: Dissociation of the synthesis of nucleic acids from the synthesis of protein by a purine analogue. Exp. Cell Res., Suppl. 6, 152 (1958).

    Google Scholar 

  • Ceantrenne, H., and S. Devreux: Action de la 8-azaguanine sur Bacillus cereus. Arch. int. Physiol. 66, 114 (1958).

    Google Scholar 

  • Ceantrenne, H., and S. Devreux: Formation induite de catalase et métabolisme des acides nucléiques chez la levure. Effet des rayons X. Biochim. biophys. Acta 31, 134 (1959).

    Google Scholar 

  • Ceantrenne, H., and S. Devreux: Action de la 8-azaguanine sur la synthèse des protéines et des acides nucléiques chez Bacillus cereus. Biochim. biophys. Acta 39 486 (1960 a).

    Google Scholar 

  • Ceantrenne, H., and S. Devreux: Restauration de la synthèse d’enzymes après inhibition par l’azaguanine. Biochim. biophys. Acta 41 239 (1960 b).

    Google Scholar 

  • Clarke, J. S., and C. A. Pasternak: The regulation of amino sugar metabolism in Bacillus subtilis. Biochem. J. 81, 1 P (1961).

    Google Scholar 

  • Clayton, R. K.: Protein synthesis in the induced formation of catalase in Rhodopseudomonas spheroides. J. biol. Chem. 235, 405 (1960).

    PubMed  CAS  Google Scholar 

  • Clayton, R. K.: The induced synthesis of catalase in Rhodopseudomonas spheroides. Biochim. biophys. Acta 37, 503 (1960).

    CAS  Google Scholar 

  • Cohen, G. N., et D. B. Cowie: Remplacement total de la méthionine par la sélénométhionine dans les protéines d’Escherichia coli. C. R. Acad. Sci. (Paris) 244, 680 (1957).

    CAS  Google Scholar 

  • Cohen, G. N., and J. Monod: Bacterial permeases. Bact. Rev. 21, 169 (1957).

    PubMed  CAS  Google Scholar 

  • Cohen, G. N., et H. V. Rickenbero: Existence d’accepteurs spécifiques pour les amino-acides chez Escherichia coli. C.R. Acad. Sci. (Paris) 240, 2086 (1955).

    CAS  Google Scholar 

  • Cohen, G. N., et H. V. Rickenbero: Concentration spécifique réversible des amino acids chez Escherichia coli. Ann. Inst. Pasteur 91, 693 (1956).

    CAS  Google Scholar 

  • Cohen, S. S.: Streptomycin and desoxyribonuclease in the study of variations in the properties of a bacterial virus. J. biol. Chem. 166, 393 (1946).

    CAS  Google Scholar 

  • Coln, M.: On the inhibition by glucose of the induced synthesis of ß-galactosidase in Escherichia coli. Henry Ford Hospital Intern. Sympos: Enzymes. Units of biological structure and function (edit. Garbler), p. 41. New York: Acad. Press 1956.

    Google Scholar 

  • Coln, M.: Contributions of studies on the ß-galactosidase of Escherichia coli to our understanding of enzyme synthesis. Bact. Rev. 21, 140 (1957).

    Google Scholar 

  • Coln, M., G. N. Cohen et J. Monod: L’effet inhibiteur spécifique de la méthionine dans la formation de la méthionine-synthétase chez E. coli. C.R. Acad. Sci. (Paris) 236, 746 (1953).

    Google Scholar 

  • Coln, M., and K. Horibata: Inhibition by glucose of the induced synthesis of the ß-galactosidaseenzyme system of E. coli. Analysis of maintenance. J. Bact. 78, 601 (1959).

    Google Scholar 

  • Coln, M.: Analysis of the differentiation and of the heterogeneity within a population of E. coli untergoing induced ß-galactosidase synthesis. J. Bact. 78, 613 (1959).

    Google Scholar 

  • Coln, M.: Physiology of the inhibition by glucose of the induced synthesis of the ß-galactosideenzyme system of Escherichia. J. Bact. 78, 624 (1959).

    Google Scholar 

  • Coln, M., E. Lennox and S. Spiegelman: On the behaviour of the E. coli Pz-“ß-galactosidesystem” introduced into Shigella dysenteriae. Biochim. biophys. Acta 39, 255 (1960).

    Google Scholar 

  • Coln, M., E. Lennox, and J. Moxod: Specific inhibition and induction of enzyme biosynthesis. In: Adaptation in microorganisms. 3rd Sympos. Soc. for gen. Microbiol., p. 138. Cambridge: Cambridge Univ. Press. 1953.

    Google Scholar 

  • Cowie, D. B., and G. N. Cohen: Biosynthesis by E. coli of active altered proteins containing selenium instead of sulfur. Biochim. biophys. Acta 26, 252 (1957).

    CAS  Google Scholar 

  • Cowie, D. B., and G. N. Cohen, E. T. Bolton and H. DE Robichon-SzUlmajster: Amino acid analog incorporation into bacterial proteins. Biochim. biophys. Acta 34, 39 (1959).

    CAS  Google Scholar 

  • Crane, R. K., and A. Sors: The non-competitive inhibition of brain hexokinase by glucose6-phosphate and related compounds. J. biol. Chem. 210, 597 (1954).

    PubMed  CAS  Google Scholar 

  • Crathorn, A. R., and G. D. Hunter: Amino acid “exchange” and protein synthesis in cell walls of Bacillus megaterium. Biochem. J. 69, 47 (1958).

    Google Scholar 

  • Crawford, I., A. Kornberg and E. S. Simms: Conversion of uracil and orotate to uridine 5-phosphate by enzymes in Lactobacilli. J. biol. Chem. 226, 1093 (1957).

    PubMed  CAS  Google Scholar 

  • Crawford, I. P.: Identification of the triose phosphate formed in the tryptophan synthetase reaction. Biochim. biophys. Acta 45, 405 (1960).

    CAS  Google Scholar 

  • Creaser, E. H.: The assimilation of amino acids by bacteria. 22. The effect of 8-azaguanine upon enzyme formation in Staphylococcus aureus. Biochem. J. 64, 539 (1956).

    PubMed  CAS  Google Scholar 

  • Danielli, J. F.: Structural factors in cell permeability and secretion. VI. Structural aspects of cell physiology. Symp. Soc. exp. Biol. 6, 1 (1952).

    Google Scholar 

  • Datta, S. P., and B. R. Rabin: The chelation of metal ions by dipetides and related compounds. Biochim. biophys. Acta 19, 572 (1956).

    CAS  Google Scholar 

  • Davie, E. W., V. V. Koningsberger and F. Lipmann: The isolation of a tryptophan-activating enzyme from pancreas. Arch. Biochem. 65, 21 (1956).

    PubMed  CAS  Google Scholar 

  • Davis, B. D.: Relations between enzymes and permeability (membrane transport) in bacteria. Henry Ford Hospital Intern. Sympos.: Enzymes. Units of biological structure and function (edit. Gaebler), p. 509. New York: Acad. Press 1956.

    Google Scholar 

  • de Ley, J., and J. Schel: Studies on the metabolism of Acetobacter peroxydans. II. The enzymic mechanism of lactate metabolism. Biochim. biophys. Acta 35, 154 (1959).

    Google Scholar 

  • de Moss, J. A., and G. D. Novelli: An amino acid dependent exchange between inorganic pyrophosphate and ATP in microbial extracts. Biochim. biophys. Acta 18, 592 (1955).

    Google Scholar 

  • DE Moss, J. A., and G. D. Novelli: An amino acid dependent exchange between P32-labelled inorganic pyrophosphates and ATP in microbial extracts. Biochim. biophys. Acta 22, 49 (1956).

    Google Scholar 

  • Dénes, G.: Glucose repression and induction of ß-galactosidase synthesis in Escherichia coli. Biochim. biophys. Acta 50, 408 (1961).

    Google Scholar 

  • Dixon, M.: Multi-enzyme systems. 4 Lectures, London 1948. Cambridge: Cambridge Univ. Press, 2nd Print 1951.

    Google Scholar 

  • Doudney, C. O., and F. L. Haas: Chloramphenicol, nucleic acid synthesis and mutation induced by ultraviolet light. Biochim. biophys. Acta 40, 375 (1960).

    CAS  Google Scholar 

  • Dressler, H., and C. R. Dawson: On the nature and mode of action of the copper-protein, tyrosinase. I. Exchange experiments with radioactive copper and the resting enzyme. Biochim. biophys. Acta 45, 508 (1960a).

    CAS  Google Scholar 

  • Dressler, H., and C. R. Dawson: On the nature and mode of action of the copperprotein, tyrosinase. II. Exchange experiments with radioactive copper and the functioning enzyme. Biochim. biophys. Acta 45, 515 (1960b).

    CAS  Google Scholar 

  • Duerrsen, J. D., and H. Halvorson: Purification and properties of an inducible ß-glucosidase of yeast. J. biol. Chem. 233, 1113 (1958).

    Google Scholar 

  • Durham, N. N., and D. L. Mcpherson: Influence of extraneous carbon sources on biosynthesis de novo of bacterial enzymes. J. Bact. 80, 7 (1960).

    PubMed  CAS  Google Scholar 

  • Dutton, G. J.: The mechanism of glucuronide formation: a review. Biochem. J. 73, 29 (1959).

    Google Scholar 

  • Elson, D.: Latent ribonuclease in a ribonucleoprotein. Biochim. biophys. Acta 27, 216 (1958).

    CAS  Google Scholar 

  • Elson, D.: Preparation and properties of a ribonucleoprotein isolated from Escherichia coli. Biochim. biophys. Acta 36, 362 (1959).

    CAS  Google Scholar 

  • Elson, D.: Latent enzymic activity of a ribonucleoprotein isolated from Escherichia coli. Biochim. biophys. Acta 36, 372 (1959).

    CAS  Google Scholar 

  • Engelsberg, E.: Glucose inhibition and the diauxie phenomenon. Proc. nat. Acad. Sci. (Wash.) 45, 1494 (1959).

    Google Scholar 

  • Flavin, M., and T. Koxo: Threonine synthetase mechanism: studies with isotopic oxygen. J. biol. Chem. 235, 1109 (1960).

    PubMed  CAS  Google Scholar 

  • Fukumoto, J., T. Yamamoto and D. Tsuru: Effects of carbon sources and base analogues of nucleic acid on the formation of bacterial amylase. Nature (Lond.) 180, 438 (1957).

    CAS  Google Scholar 

  • Gale, E. F.: Points of interference by antibiotics in the assimilation of amino acids by bacteria. 2e Congr. Internat. de Biochimie, Paris 1952. Sympos. sur le mode d’action des antibiotiques, Paris, p. 1, 1952.

    Google Scholar 

  • Gale, E. F.: Assimilation of amino acids by gram-positive bacteria and some actions of antibiotics thereon. Advanc. Protein Chem. 8, 285 (1953).

    CAS  Google Scholar 

  • Gale, E. F.: Incorporation of amino acids by disrupted staphylococci: replacement of ribonucleic acid by its digestion products. Proc. 3rd Internat. Congr. Biochem., Brussells 1955, p. 345. New York: Academic Press 1956.

    Google Scholar 

  • Gale, E. F.: The biochemical organization of the bacterial cell. Proc. roy. Soc. B 146, 166 (1957).

    CAS  Google Scholar 

  • Gale, E. F.: Specific inhibitors of protein synthesis. 8th Sympos. Soc. Gen. Microbiol., London 1958: The strategy of chemotherapy, p. 212. Cambridge: Cambridge Univ. Press 1958.

    Google Scholar 

  • Gale, E. F., and J. P. Folkes: The assimilation of amino acids by bacteria. 15. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem. J. 53, 493 (1953).

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and J. P. Folkes: The assimilation of amino acids by bacteria. 19. The inhibition of phenylalanine incorporation in Staphylococcus aureus by chloramphenicol and p-chlorphenylalanine. Biochem. J. 55, 730 (1953).

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and J. P. Folkes: The assimilation of amino acids by bacteria. 20. The incorporation of labelled amino acids by disrupted staphylococcal cells. Biochem. J. 59, 661 (1955).

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and J. P. Folkes: The assimilation of amino acids by bacteria. 21. The effect of nucleic acids on the development of certain enzymic activities in disrupted staphylococcal cells. Biochem. J. 59, 675 (1955).

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and E. S. Taylor: The assimilation of amino acids by bacteria. 5. The action of penicillin in preventing the assimilation of glutamic acid by Staphylococcus aureus. J. gen. Microbiol. 1, 314 (1947).

    PubMed  CAS  Google Scholar 

  • Gorini, L.: Regulation en retour (feedback control) de la synthèse de l’arginine chez Escherichia coli. Bull. Soc. Chim. biol. (Paris) 40, 1939 (1958).

    CAS  Google Scholar 

  • Gorini, L.: Antagonism between substrate and repressor in controlling the formation of a biosynthetic enzyme. Proc. nat. Acad. Sci. (Wash.) 46, 682 (1960).

    CAS  Google Scholar 

  • Gorini, L., and W. Gundersen: Induction by arginine of enzymes of arginine biosynthesis in Escherichia coli B. Proc. nat. Acad. Sci. (Wash.) 47, 961 (1961).

    CAS  Google Scholar 

  • Gorini, L., and W. K. Maas: The potential for the formation of a biosynthetic enzyme in Escherichia coli. Biochim. biophys. Acta 25. 208 (1957).

    CAS  Google Scholar 

  • Gorini, L., and W. K. Maas: Feedback control of the formation of biosynthetic enzymes. Symposium on the chemical basis of development (McElroy and Glass, eds.), p. 469. Baltimore: Johns Hopkins Press 1958.

    Google Scholar 

  • Gros, FR., et F. Gros: Rôle des aminoacides dans la synthèse des acides nucléiques chez Escherichia coli. Biochim. biophys. Acta 22, 200 (1956).

    CAS  Google Scholar 

  • Gros, FR., et F. Gros: Rôle des acides aminés dans la synthèse des acides nucléiques chez Escherichia coli. Exp. Cell Res. 14, 104 (1958).

    PubMed  CAS  Google Scholar 

  • Gross, D., and H. Tarver: Studies on ethionine. IV. The incorporation of ethionine into the proteins of tetrahymena. J. biol. Chem. 217, 169 (1955).

    PubMed  CAS  Google Scholar 

  • Gross, S. R.: Enzymatic autoinduction and the hypothesis of intracellular permeability barriers in Neurospora. Trans. N.Y. Acad. Sci., Ser. I I, 22, 44 (1959).

    Google Scholar 

  • Gross, S. R., and A. Fein: Linkage and function in Neurospora. Genetics 45, 885 (1960).

    PubMed  CAS  Google Scholar 

  • GRÜNberg-Manago, M., and S. Ochoa: Enzymatic synthesis and breakdown of polynucleotides; polynucleotide phosphorylase. J. Amer. them. Soc. 77, 3165 (1955).

    Google Scholar 

  • Gross, S. R., P. J. Ortiz and S. Ochoa: Enzymatic synthesis of nucleic acidlike polynucleotides. Science 122, 907 (1955).

    Google Scholar 

  • Gross, S. R., P. J. Ortiz and S. Ochoa: Enzymatic synthesis of polynucleotides. I. Polynucleotide phosphorylase of Azotobacter vinelandii. Biochim. biophys. Acta 20, 269 (1956).

    Google Scholar 

  • Grylls, F. S. M., and J. S. Harrison: Adaptation of yeast to maltose fermentation. Nature (Lond.) 178, 1471 (1956).

    CAS  Google Scholar 

  • Hahn, F E., and C. L. Wisseman: Inhibition of adaptive enzyme formation by antimicrobial agents. Proc. Soc. exp. Biol. (N.Y.) 76, 533 (1951).

    CAS  Google Scholar 

  • Hahn, F E., C. L. Wisseman, and H. E. Hours: Mode of action of chloramphenicol. II. Inhibition of bacterialD-polypeptide formation of an L-stereoisomer of chloramphenicol. J. Bact. 67, 674 (1954).

    PubMed  CAS  Google Scholar 

  • Hahn, F E., C. L. Wisseman, and H. E. Hours: Mode of action of chloramphenicol. Iii. Action of chloramphenicol on bacterial energy metabolism. J. Bact. 69, 215 (1955).

    PubMed  CAS  Google Scholar 

  • Hakim, A. A.: Tryptophan-tryptophanase adaptation. II. Action of penicillin, streptomycin, tetracyn and chloramphenicol on certain enzyme systems influencing enzyme adaptation. Enzymologia 19, 130 (1958).

    PubMed  CAS  Google Scholar 

  • Hall, J. B., and F. W. Allen: Studies on the incorporation of orotic acid into the 5-ribosyluracil phosphate of the ribonucleic acids of yeast. Biochim biophys. Acta 39, 557 (1960).

    CAS  Google Scholar 

  • Hall, J. B., and F. W. Allen: Studies on the biosynthesis of 5-ribosyluracil phosphate in Neurospora crassa 36601. Biochim. biophys. Acta 45, 163–171 (1960).

    CAS  Google Scholar 

  • Halvorson, H., S. Spiegelman and R. L. Hinman: The effect of tryptophan analogs on the induced synthesis of maltase and protein synthesis in yeast. Arch. Biochem. 55, 512 (1955).

    CAS  Google Scholar 

  • Hamers, R., and C. Hamers-Casterman: Synthesis by Escherichia coli of a ß-galactosidaselike protein under the influence of thiouracil. Biochim. biophys. Acta 33, 269 (1959).

    CAS  Google Scholar 

  • Hamilton, W. A., and E. A. Dawes: A diauxic effect with Pseudomonas aeruginosa. Biochem. J. 71, 25 (1959).

    Google Scholar 

  • Harrington, M.: The action of antibiotics on Bacterium coli. Thesis, Nation. Univ. of Ireland, Univ. College, Cork 1955.

    Google Scholar 

  • Heinz, E.: Aktiver Transport von Aminosäuren. 12. Colloquium der Ges. für Physiol. Chemie, Mosbach/Baden, 1961, S. 167. Berlin- Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Herbert, E., and E. S. Canellakis: Studies on synthesis of soluble ribonucleic acid. Iii. Analytic studies on soluble ribonucleic acid of rat. Biochim. biophys. Acta 42, 363 (1960).

    CAS  Google Scholar 

  • Herzenberg, L. A.: Studies on the induction of ß-galactosidase in a cryptic strain of Escherichia coli. Biochim. biophys. Acta 31, 525 (1959).

    CAS  Google Scholar 

  • Hoch, F. L., R. J. P. Williams and B. L. Vallee: The role of zinc in alcohol dehydrogenase. II. The kinetics of the instantaneous reversible inhibition of yeast alcohol dehydrogenase by 1,10-phenanthroline. J. biol. Chem. 232, 453 (1958).

    PubMed  CAS  Google Scholar 

  • Holmes, R., R. Sheinin and B. F. Crocker: A study of the permeability barrier to ß-galactosides in Escherichia coli B. Canad. J. Biochem. 39, 45 (1961).

    PubMed  CAS  Google Scholar 

  • Holzer, H.: Über Fermentketten und ihre Bedeutung für die Regulation des Kohlenhydratstoffwechsels in lebenden Zellen. In: Biologie und Wirkung der Fermente. 4. Colloquium der Ges. für Physiol. Chemie, S. 89. Berlin-Göttingen-Heidelberg: Springer 1953.

    Google Scholar 

  • Holzer, H.: Kinetik und Thermodynamik enzymatischer Reaktionen in lebenden Zellen und Geweben. In: Ergebnisse der Medizinischen Grundlagenforschung (Hrsg. Bauer), Bd. I, S. 189. Stuttgart: Georg Thieme 1956.

    Google Scholar 

  • Holzer, H.: Enzymic regulation of fermentation in yeast cells. Ciba Foundation Symposium on the regulation of cell metabolism, p. 277. London: J. &. A. Churchill Ltd. 1959.

    Google Scholar 

  • Holzer, H.: Carbohydrate metabolism. Ann. Rev. Biochem. 28, 171 (1959).

    PubMed  CAS  Google Scholar 

  • Holzer, H., u. R. Freytag-Hilf: Zusammenwirken der Gärungsenzyme beim anaeroben und aeroben Glucoseumsatz in Hefezellen. Hoppe-Seylers Z. physiol. Chem. 316, 7 (1959).

    PubMed  CAS  Google Scholar 

  • Holzer, H., u. A. Holldorf: Enzymatische Regulation von Atmung und Gärung. In Handbuch der

    Google Scholar 

  • Pflanzenphysiologie, Bd. Xii /1, S. 1092. Berlin-Göttingen-Heidelberg: Springer 1959.

    Google Scholar 

  • Holzer, H., u. I. Witt: Regulation des Pentosephosphat-Cyklus durch Tpnh-Oxydation. Angew. Chem. 70, 439 (1958).

    Google Scholar 

  • Holzer, H., I. Witt, u. R. Freytag-Hilf: Zum Mechanismus des Pasteur-Effektes: Bestimmung von ATP, ADP, Orthophosphat und verschiedenen Zwischenprodukten des Kohlenhydratstoffwechsels in lebenden Hefezellen beim Übergang von anaeroben zu aeroben Bedingungen. Biochem. Z. 329, 467 (1958).

    PubMed  CAS  Google Scholar 

  • HoRiuchi, T., S. Horiuchi and D. Mizuno: A possible negative feedback phenomenon controlling formation of alkaline phosphomonoesterase in Escherichia coli. Nature (Lond.) 183, 1529 (1959).

    Google Scholar 

  • Horowitz, J., J. J. Saukkonen and E. Chargaff: Effect of 5-fluorouracil On an uracil requiring mutant of Escherichia coli. Biochim. biophys. Acta 29, 222 (1958).

    CAS  Google Scholar 

  • Hurwitz, CH., and C. L. Rosano: Chloramphenicol-sensitive and -insensitive phases of the lethal action of streptomycin. Biochim. biophys. Acta 41, 162 (1960).

    CAS  Google Scholar 

  • Jackson, K. L., and N. Pace: Some permeability properties of isolated rat liver cell mitochondria. J. gen. Physiol. 40, 47 (1957).

    Google Scholar 

  • Jacob, F., et J. MoNod: Gènes de structure et gènes de régulation dans la biosynthèse des protéines. C.R. Acad. Sci. (Paris) 249, 1282 (1959).

    CAS  Google Scholar 

  • Jacob, F., and E. L. Wollman: Genetic and physical determinations of chromosomal segments in Escherichia coli. Soc. exp. Biol., Sympos. London, p. 75, 1958.

    Google Scholar 

  • Jacobs, M. H., and D. R. Stewart: The role of carbonic-anhydrase in certain ionic exchanges involving the erythrocyte. J. gen. Physiol. 25, 539 (1942).

    PubMed  CAS  Google Scholar 

  • Jeener, R.: Biological effects of the incorporation of thiouracil into the ribonucleic acid of tobacco mosaic virus. Biochim. biophys. Acta 23, 351 (1957).

    CAS  Google Scholar 

  • Jeener, R., C. Hamers-Casterman and N. Mairesse: On the inhibition of phage production by 2-thiouracil and 8-azaguanine in an induced lysogenic Bacillus megatherium. Biochim. biophys. Acta 32, 166 (1959).

    Google Scholar 

  • Johnson, M. J.: The role of aerobic phosphorylation in the Pasteur-effect. Science 94, 200 (1941).

    PubMed  CAS  Google Scholar 

  • Kempner, E. S., and D. B. Cowie: Metabolic pools and the utilization of aminoacid analogs for protein synthesis. Biochim. biophys. Acta 42, 401 (1960).

    CAS  Google Scholar 

  • Kepes, A.: Etudes cinétiques sur la galactoside-perméase d’Escherichia coli. Biochim. biophys. Acta 40, 70 (1960).

    CAS  Google Scholar 

  • Kepes, A.: Bacterial permeases. 12. Colloquium der Ges. für Physiol. Chemie, Mosbach/Baden, 1961, p. 100. Berlin- Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Kornberg, A.: Die biologische Synthese von Desoxy-ribonucleinsäure (Dns). Nobel-Vortrag am 11. Dez. 1959. Angew. Chem. 72, 231 (1960).

    Google Scholar 

  • Krebs, H. A.: The intermediary stages in the biological oxidation of carbohydrate. Adv. Enzymol. 3, 191 (1943).

    CAS  Google Scholar 

  • Krebs, H. A.: Chemical pathways of metabolism, vol. 1, p. 109. New York: Academic Press 1954.

    Google Scholar 

  • Krebs, H. A.: Die Steuerung der Stoffwechselvorgänge. Dtsch. med. Wschr. 81, 4 (1956).

    CAS  Google Scholar 

  • Krebs, H. A.: The effects of extraneous agents on cell metabolism. In: Ciba Foundation Symposium on Ionizing Radiations and Cell Metabolism (Wolstenholme and O’Connor, eds.), p. 92. London: J. & A. Churchill Ltd. 1956.

    Google Scholar 

  • Krebs, H. A.: Die Steuerung von Stoffwechselvorgängen. Endeavour 16, 125 (1957).

    CAS  Google Scholar 

  • Krebs, H. A.: Die Steuerung von Stoffwechselvorgängen. Naturw. Rdsch. 11, 79 (1958).

    CAS  Google Scholar 

  • Krebs, H. A., u. H. L. Kornberg: Energy transformation in living matter. Ergebn. Physiol. 49, 212 (1957).

    PubMed  CAS  Google Scholar 

  • Lacks, S., and R. D. Hotchkiss: Formation of amylomaltase after genetic transformation of Pneumococcus. Biochim. biophys. Acta 45, 155 (1960).

    PubMed  CAS  Google Scholar 

  • Lamborg, M. R., and P. C. Zamecnik: Amino acid incorporation into protein by extracts of E. coli. Biochim. biophys. Acta 42, 206–211 (1960).

    CAS  Google Scholar 

  • Laser, H., and M. J. Thornley: Stimulation by X-radiation of enzyme induction and growth in Escherichia coli. Proc. roy. Soc. B 150, 539 (1959).

    CAS  Google Scholar 

  • Lederberg, J.: Bacterial protoplasts induced by penicillin. Proc. nat. Acad. Sci. (Wash.) 42, 574 (1956).

    CAS  Google Scholar 

  • Lederberg, J.: Mechanism of action of penicillin. J. Bact. 73, 144 (1957).

    PubMed  CAS  Google Scholar 

  • Leiner, M.: Die enzymatische Anpassung bei Mikro-Organismen ohne Veränderung des Erbgutes. Ergebn. Mikrobiol. Immun.-Forsch. u. exp. Ther. 31, 35 (1958a).

    CAS  Google Scholar 

  • Leiner, M.: Variable katalytische Aktivität des Fermentes Kohlensäure-Anhydratase (KA) durch Umgebungseinflüsse. Z. Naturforsch. 13b, 242 (1958b).

    Google Scholar 

  • Leiner, M., u. H. Beck: Von der Hemmbarkeit der katalytischen Aktivität der Kohlensäure-Anhydratase (KA). I. Acta biol. et med. germanica 2, 632 (1959).

    Google Scholar 

  • Leiner, M., H. Beck u. H. Eckert: Über die Kohlensäure-Dehydratase in den einzelnen Wirbeltierklassen. I. Der Zinkgehalt in den einzelnen Fermenten und die Wirkung des Inhibitors aus dem Schafblut auf die einzelnen Enzyme. Hoppe-Seylers Z. physiol. Chem. 327 (1962).

    Google Scholar 

  • Lester, G.: Repression and inhibition of indole-synthesizing activity in Neurospora crassa. J. Bact. 82, 215 (1961).

    PubMed  CAS  Google Scholar 

  • Levin, D. H., and E. Racker: Condensation of arabinose 5-phosphate and phosphoryl enol pyruvate by 2-keto-3-deoxy-8-phosphooctonic acid synthetase. J. biol. Chem. 234, 2532 (1959).

    PubMed  CAS  Google Scholar 

  • Loomis, W. F.: On the mechanism of action of aureomycin. Science 111, 474 (1950).

    PubMed  CAS  Google Scholar 

  • Lubin, M., D. H. Kessel, A. Budreau and J. D. Gross: The isolation of bacterial mutants defective in amino acid transport. Biochim. biophys. Acta 42, 535 (1960).

    CAS  Google Scholar 

  • Lynen, F.: Über den aeroben Phosphatbedarf der Hefe. Ein Beitrag zur Kenntnis der Pasteurschen Reaktion. Justus Liebigs Ann. Chem. 546, 120 (1941).

    CAS  Google Scholar 

  • Lynen, F.: Diskussion zum Vortrag H. A. Lardy, Energetic coupling and the regulation of metabolic rates. Proc. 3rd Internat. Congr. Biochem., Brussels 1955, p. 294. New York: Academic Press 1956.

    Google Scholar 

  • Lynen, F.: Phosphatkreislauf und Pasteur-Effekt. In: Neuere Ergebnisse aus Chemie und Stoffwechsel der Kohlenhydrate. 8. Colloquium der Ges. für Physiol. Chemie, S. 155. Berlin-Göttingen-Heidelberg: Springer 1958.

    Google Scholar 

  • Lynen, F.: Phosphatkreislauf und Pasteur-Effekt. In: Proc. Intern. Sympos. on Enzyme Chemistry. Tokyo and Kyoto 1957, p. 25. Tokyo: Maruzen 1958.

    Google Scholar 

  • Lynen, F., G. Hartmann, K. F. Netter and A. Schuegraf: Phosphate turnover and Pasteur effect. Ciba Foundation Sympos. on the regulation of cell metabolism, p. 256. London: J. &. A. Churchill Ltd. 1959.

    Google Scholar 

  • Lynen, F., u. R. Koenigsberger: Zum Mechanismus der Pasteurschen Reaktion: Der Phosphat Kreislauf in der Hefe und seine Beeinflussung durch 2,4-Dinitrophenol. Über den aeroben Phosphatbedarf der Hefe. VI. Justus Liebigs Ann. Chem. 573, 60 (1951).

    CAS  Google Scholar 

  • Maas, W., and L. Gorini: End-product control for the formation of a biosynthetic enzyme. Fed. Proc. 16, 215 (1957).

    Google Scholar 

  • Macquillan, A. M., S. Winderman and H. O. Halvorson: The control of enzyme synthesis by glucose and the repressor hypothesis. Biochem. biophys. Res. Commun. 3, 77 (1960).

    CAS  Google Scholar 

  • Magasanik, A. K., and A. Bojarsra: Enzyme induction and repression by glucose in Aerobacter aerogenes. Biochem. biophys. Res. Commun. 2, 77 (1960).

    CAS  Google Scholar 

  • Magasanik, B.: Nutrition of bacteria and fungi. Ann. Rev. Microbiol. 11, 221 (1957).

    CAS  Google Scholar 

  • Magasanik, B.: The metabolic regulation of purine interconversions and of histidine biosynthesis. In: Symposium on the chemical basis of development (Mcelroy and Glass, eds.), p. 485. Baltimore: Johns Hopkins Press 1958.

    Google Scholar 

  • Magasanik, B., and H. Bowser: The degradation of histidine by Aerobacter aerogenes. J. biol. Chem. 213, 571 (1955).

    PubMed  CAS  Google Scholar 

  • Magasanik, B, A. K. Magasanik and F. C. Neidhardt: Regulation of growth and composition of the bacterial cell. Ciba Foundation Symposium on the regulation of cell metabolism, p. 334. London: J. &. A. Churchill Ltd. 1959.

    Google Scholar 

  • Magasanik, B., F. C. Neidhardt and A. P. Levin: Metabolic regulation of enzyme biosynthesis in bacteria. In: Physiological adaptation (edit. C. L. Prosser), pp. 159–166. Washington D. C.: American Physiological Society 1958.

    Google Scholar 

  • Mager, J.: Chloramphenicol and chlortetracycline inhibition of amino acid incorporation into proteins in a cell-free system from Tetrahymena pyriformis. Biochim. biophys. Acta 38, 150 (1960).

    CAS  Google Scholar 

  • Mager, J., and B. Magasanik: Guanosine 5’-phosphate reductase and its role in interconversion of purine nucleotides. J. biol. Chem. 235, 1474 (1960).

    PubMed  CAS  Google Scholar 

  • Mandel, H. G.: Incorporation of 8-azaguanine and growth inhibition in Bacillus cereus. J. biol. Chem. 225, 137 (1957).

    PubMed  CAS  Google Scholar 

  • Mandel, H. G., and R. Markham: The effects of 8-azaguanine on the biosynthesis of ribonucleic acid in Bacillus cereus. Biochem. J. 69, 297 (1957).

    Google Scholar 

  • Mandel, H. G., G. J. Sugerman and R. A. Apter: Fractionation studies of Bacillus cereus containing 8-azaguanine. J. biol. Chem. 225, 151 (1957).

    PubMed  CAS  Google Scholar 

  • Mandelstam, J.: Turnover of protein in starved bacteria and its relationship to the induced synthesis of enzyme. Nature (Lond.) 179, 1179 (1957).

    CAS  Google Scholar 

  • Marsh, C. L., and G. W. Kelley: Studies in helminth enzymology. I. Inorganic pyrophosphatase activity in some helminth parasites of domestic animals. Exp. Parasit. 7, 366 (1958).

    PubMed  CAS  Google Scholar 

  • Marsh, C. L., and G. W. Kelley: Studies in helminth enzymology. II. Properties of an inorganic pyrophosphatase from Ascaridia galli, a nematode parasite of chickens. Exp. Parasit. 8, 274 (1959).

    PubMed  CAS  Google Scholar 

  • Marshax, A.: Processes co-ordinating intracellular activity. Soc. Exp. Biol., Symposium London 205 (1958).

    Google Scholar 

  • Martin, G., et G. Legrand: Recherches sur les facteurs de production de la laccase par le mycélium d’Agaricus campestris. IV. Influence de la teneur en manganèse du milieu de culture. Bull. Soc. Chim biol. (Paris) 41, 1463 (1959).

    CAS  Google Scholar 

  • Matthews, R. E. F.: Incorporation of unnatural bases into nucleic acids. Proc. 3rd internat. Congr. Biochem, Brussels 1955, p. 63. New York: Academic Press 1956.

    Google Scholar 

  • Mclaren, A. D.: Enzyme action in structurally restricted systems. Enzymologia 21, 356 (1960).

    CAS  Google Scholar 

  • Melnykovych, G., and K. R. Johansson: Effects of chlortetracycline on the stability of arginine decarboxylase in Escherichia coli. J. Bact. 77, 638 (1959).

    CAS  Google Scholar 

  • Melnykovych, G., and E. E. Snell: Nutritional requirements for the formation of arginine decarboxylase in Escherichia coli. J. Bact. 76, 518 (1958).

    CAS  Google Scholar 

  • Mentzer, C., P. Meunier and L. Molho-Lacroix: Faits de synergie et d’antagonism entre la chloromycetine et divers amino-acides vis-à-vis de cultures d’E. coli. C.R. Acad. Sei. (Paris) 230, 241 (1950).

    CAS  Google Scholar 

  • Meyerhof, O.: Über die Kinetik der umkehrbaren Reaktionen zwischen Hexodiphosphorsäure und Dioxyacetonphosphorsäure. Biochem. Z. 277, 77 (1935).

    CAS  Google Scholar 

  • Miller, C. P., and M. Bohnhoff: Development of streptomycin-resistant variants of Meningococcus. Science 105, 620 (1947).

    PubMed  CAS  Google Scholar 

  • Miller, D M: The osmotic pump theorie of selective transport. Biochim. biophys. Acta 37, 448 (1960).

    CAS  Google Scholar 

  • Minagawa, T.: Studies on the adaptation of yeast to copper. Xix Effect of copper on cytochrome components of yeast. Exp. Cell. Res. 14, 333 (1958).

    PubMed  CAS  Google Scholar 

  • Mitchell, P. D., and J. Moyle: Relationships between cell growth, surface properties and nucleic acid production in normal and penicillin-treated Micrococcus pyogenes. J. gen. Microbiol. 5, 421 (1951).

    CAS  Google Scholar 

  • Mokrasch, L. C., and S. Grisolla: Contribution of hydrouracil and its derivatives to pyri- midine biosynthesis. II. Mechanism studies. Biochim. biophys. Acta 34, 165 (1959).

    CAS  Google Scholar 

  • Monod, J.: Information, induction, repression dans la biosynthèse d’un enzyme. 10. Colloquium der Ges. für Physiol. Chemie, Mosbach/Baden, „Dynamik des Eiweißes“, p. 120. Berlin- Göttingen-Heidelberg: Springer 1960.

    Google Scholar 

  • Monod, J., et G. Cohen-Bazire: L’effet inhibiteur spécifique des ß-galactosides dans la biosynthèse “constitutive” de la ß-galactosidase chez E. coli. C. R. Acad. Sci. (Paris) 236, 417 (1953).

    CAS  Google Scholar 

  • Monod, J., et G. Cohen-Bazire: L’effet d’inhibition spécifique dans la biosynthèse de la tryptophane-desmase chez Aerobacter aerogenes. C.R. Acad. Sci. (Paris) 236, 530 (1953).

    CAS  Google Scholar 

  • Morton, A. G., A. G. F. Dickerson and D. J. F. England: Changes in enzyme activity of fungi during nitrogen starvation. J. exp. Bot. 11, 116 (1960).

    CAS  Google Scholar 

  • Munier, R., et G. N. Cohen: Incorporation d’analogues structuraux d’aminoacides dans les protéines bactériennes. Biochim. biophys. Acta 21, 592 (1956).

    CAS  Google Scholar 

  • Munier, R., et G. N. Cohen: Incorporation d’analogues structuraux d’aminoacides dans les protéines bactériennes au cours de leur synthèse in vivo. Biochim. biophys. Acta 31, 378 (1959).

    CAS  Google Scholar 

  • Myrback, K.: Die Hemmung der Hefeinvertase (Saccharase) durch Metallionen. 2. Mitt. Die Wirkung von Ag+, Cu+, Cd2}, Zn2+ und deren Komplexbildung mit Acetationen. Ark. Kemi (Stockh.) 8, 393 (1956).

    Google Scholar 

  • Neidhardt, F. C.: Mutant of Aerobacter aerogenes lacking glucose repression. J. Bact. 80, 536 (1960).

    CAS  Google Scholar 

  • Neidhardt, F. C., and F. Gros: Metabolic instability of the ribonucleic acid synthesized by Escherichia coli in the presence of Chloromycetin. Biochim. biophys. Acta 25, 513 (1957).

    CAS  Google Scholar 

  • Neidhardt, F. C., and B. Magasanik: The effect of glucose on the induced biosynthesis of bacterial enzymes in the presence and absence of inducing agents. Biochim. biophys. Acta 21, 324 (1956).

    CAS  Google Scholar 

  • Neidhardt, F. C., and B. Magasanik: Inhibitory effect of glucose on enzyme formation. Nature (Lond.) 178, 801 (1956).

    CAS  Google Scholar 

  • Neidhardt, F. C., and B. Magasanik: Reversal of the glucose inhibition of histidinase biosynthesis in Aerobacter aerogenes. J. Bact. 73, 253 (1957).

    CAS  Google Scholar 

  • Neidhardt, F. C., and B. Magasanik: Effect of mixtures of substrates on the biosynthesis of inducible enzymes in Aerobacter aerogenes. J. Bact. 73, 260 (1957).

    CAS  Google Scholar 

  • Netter, H.: Mögliche Mechanismen und Modelle für aktive Transportvorgänge. 12. Colloquium der Ges. für Physiol. Chemie, Mosbach/Baden, 1961, p. 15 Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Nomura, M., J. Hosoda, B. Maruo and S. Akabori: Studies on amylase formation by Bacillus subtilis. II. Effect of amino acid analogues on amylase formation by Bacillus subtilis; an apparent competition between amylase formation and normal cellular protein synthesis. J. Biochem. (Tokyo) 43, 841 (1956).

    CAS  Google Scholar 

  • Northrop, J. H.: Adaptation of Bacillus megatheriune to terramycin (Oxytetracycline). J. gen. Physiol. 40, 547 (1957).

    CAS  Google Scholar 

  • Novicx, A., and L. Szilard: Description of the Chemostat. Science 112, 715 (1950).

    Google Scholar 

  • Novicx, A., and L. Szilard: Dynamics of growth processes, p. 21. Princeton: University Press 1954.

    Google Scholar 

  • Ochoa, S.: Enzymatic synthesis of polyribonucleotides. (An introduction to the two following lectures). Proc. 4th internat. Congr. Biochem., Vienna 1958, IX, p. 133, 1959.

    Google Scholar 

  • Ochoa, S.: Die enzymatische Synthese von Ribonucleinsäure (Rns). Nobel-Vortrag am 11. Dez. 1959. Angew. Chem. 72, 225 (1960).

    Google Scholar 

  • Osawa, S.: The nucleotide composition of ribonucleic acids from subcellular components of yeast. E. coli and rat liver, with special reference to the occurence of pseudouridylic acid in soluble ribonucleic acid. Biochim. biophys. Acta 42, 244 (1960).

    CAS  Google Scholar 

  • Palmer, I. S., and M. F. Mallette: The effect of exogenous sources on the synthesis of ß-galactosidase in resting-cell suspensions of Escherichia coli. J. gen. Physiol. 45, 229 (1961).

    PubMed  CAS  Google Scholar 

  • Pardee, A. B.: Effect of energy supply on enzyme induction by pyrimidine requiring mutants of Escherichia coli. J. Bact. 69, 233 (1955).

    PubMed  CAS  Google Scholar 

  • Pardee, A. B.: An inducible mechanism for accumulation of melibiose in Escherichia coli. J. Bact. 73, 376 (1957).

    PubMed  CAS  Google Scholar 

  • Pardee, A. B.: Mechanisms for control of enzyme synthesis and enzyme activity in bacteria. Ciba Foundation Symposium on the regulation of cell metabolism, p. 295. London: J. &. A. Churchill Ltd. 1959.

    Google Scholar 

  • Pardee, A. B.: The control of enzyme activity. In: The enzymes (Boyer, Lardy and MyrbÄCK, eds.), 2nd edit., vol. 1, p. 681. New York: Academic Press 1959.

    Google Scholar 

  • Pardee, A. B., F. Jacob et J. Monod: Sur l’expression et le rôle des allèles “inductible” et “constitutif” dans la synthèse de la ß-galactosidase chez des zygotes d’Escherichia coli. C. R. Acad. Sci. (Paris) 246, 3125 (1958).

    CAS  Google Scholar 

  • Pardee, A. B.: The genetic control and cytoplasmic expression of “inductibility” in the synthesis of ß-galaetosidase by E. coli. J. molec. Biol. 1, 165 (1959).

    CAS  Google Scholar 

  • Pardee, A. B., K. Paigen and L. S. Prestidge: A study of the ribonucleic acid of normal and chloromycetin-inhibited bacteria by zone electrophoresis. Biochim. biophys. Acta 23, 162 (1957).

    CAS  Google Scholar 

  • Pardee, A. B., and L. S. Prestidge: Effects of azatryptophan on bacterial enzymes and bacteriophage. Biochim. biophys. Acta 27, 330 (1958).

    CAS  Google Scholar 

  • Pardee, A. B., and L. S. Prestidge: On the nature of the repressor of ß-galactosidase synthesis in E. coli. Biochim biophys. Acta 36, 545 (1959).

    CAS  Google Scholar 

  • Pardee, A. B., V. G. Shore and L. S. Prestidge: Incorporation of azatryptophan into proteins of bacteria and bacteriophage. Biochim. biophys. Acta 21, 406 (1956).

    CAS  Google Scholar 

  • Park, J. T.: Selective inhibition of bacterial cell-wall synthesis: its possible applications in chemotherapy. 8th Sympos. Soc. gen. Microbiol., London 1958: The strategy of chemotherapy, p. 49. Cambridge: Cambridge Univ. Press 1958.

    Google Scholar 

  • Park, J. T., and M. J. Johnson: Accumulation of labile phosphate in Staphylococcus aureus grown in the presence of penicillin. J. biol. Chem. 179, 595 (1949).

    Google Scholar 

  • Park, J. T., and J. L. Strominger: Mode of action of penicillin Biochemical basis for the mechanism of action of penicillin and for its selective toxity. Science 125, 99 (1957).

    PubMed  CAS  Google Scholar 

  • Parr, C. W.: Inhibition of phosphoglucose isomerase. Nature (Lond.) 78, 1401 (1956).

    Google Scholar 

  • Parr, C. W.: Competitive inhibitors of phosphoglucose isomerase. Biochem. J. 65, 34 (1957).

    Google Scholar 

  • Passow, H.: Zusammenwirken von Membranstruktur und Zellstoffwechsel bei der Regulierung der Ionenpermeabilität roter Blutkörperchen. 12. Colloquium der Ges. für Physiol. Chemie, Mosbach/Baden, 1961, p. 54. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Polglase, W. J.: The effect of dihydrostreptomycin on the formation of ß-galactosidase by Escherichia coli. Canad. J. Biochem. 34, 554 (1956).

    PubMed  CAS  Google Scholar 

  • Polglase, W. J., S. Peretz and S. M. Roote: Adaptive enzyme formation by dihydrostreptomycindependent E. coli. Canad. J. Biochem. 34, 558 (1956).

    PubMed  CAS  Google Scholar 

  • Porter, K. R., and G. E. Palade: Studies on the endoplasmic reticulum. Iii. Its form and distribution in striated muscle cells. J. biophys. biochem. Cytol. 3, 269 (1957).

    PubMed  CAS  Google Scholar 

  • Quayle, J. R., and D. B. Keech: Carbon dioxide and formate utilization by formate-grown Pseudomonas oxylaticus. Biochim. biophys. Acta 29, 223 (1958).

    CAS  Google Scholar 

  • Quayle, J. R., and D. B. Keech: Carboxydismutase activity in formate-and oxalate-grown Pseudomonas oxalaticus (Strain 0 X 1). Biochim biophys. Acta 31, 587 (1959).

    CAS  Google Scholar 

  • Raacke, I. D.: Studies on protein synthesis with ribonucleoprotein particles from pea seedlings. Biochim. biophys. Acta 34, 1 (1959).

    CAS  Google Scholar 

  • Racker, E., and R. Wu: Limiting factors in glycolysis of ascites tumor cells and the Pasteur effect. Ciba Foundation Sympos. on the regulation of cell metabolism, p. 205. London: J. &. A. Churchill Ltd. 1959.

    Google Scholar 

  • Reichard, P., and G. Hanshoff: Aspartate carbamyl transferase from E. coli. Acta them. stand. 10, 548 (1956).

    CAS  Google Scholar 

  • Reiner, J. M.: Induced enzyme synthesis in cell-free preparations of E. coli. J. Bact. 79, 157 (1960).

    CAS  Google Scholar 

  • Reiner, J. M.: Macromolecular synthesis in cell-free preparations from E. coli. J. Bact. 79, 166 (1960).

    PubMed  CAS  Google Scholar 

  • Richmond, M. H.: Formation of a lytic enzyme by a strain of Bacillus subtilis. Biochim. biophys. Acta 33, 78 (1959).

    CAS  Google Scholar 

  • Richmond, M. H.: Properties of a lytic enzyme produced by a strain of Bacillus subtilis. Biochim. biophys. Acta 33, 92 (1959).

    CAS  Google Scholar 

  • Richmond, M. H.: Effect of inhibitors on lytic enzyme synthesis by Bacillus subtilis R. Biochim. biophys. Acta 34, 325 (1959).

    CAS  Google Scholar 

  • Rickenberg, H. V., G. N. Cohen, G. Buttin et J. Monod: La galactoside-perméase d’Eecherichia coli. Ann. Inst. Pasteur Paris 91, 829 (1956).

    PubMed  CAS  Google Scholar 

  • Rickenberg, H. V., and G. Lester: The preferential synthesis of ß-galactosidase in Escherichia coli. J. gen. Microbiol. 13, 279 (1955).

    PubMed  CAS  Google Scholar 

  • Rogers, P., and G. D. Novelli: Formation of ornithine transcarbamylase in cells and protoplasts of E. coli. Biochim. biophys. Acta 33, 423 (1959).

    CAS  Google Scholar 

  • Rogers, P., and G. D. Novelli: Cell free synthesis of ornithine transcarbamylase. Biochim. biophys. Acta 44, 298 (1960).

    CAS  Google Scholar 

  • Sachs, H., and H. Waelsch: The effect of pyrophosphate on amino acid incorporation into rat liver microsomes. Biochim. biophys. Acta 21, 188 (1956).

    CAS  Google Scholar 

  • Sacks, J.: Mechanism of phosphate transfer across cell membranes. Cold Spr. Harb. Symp. quant. Biol. 18, 180 (1948).

    Google Scholar 

  • Saz, A. K., and J. Marmur: The inhibition of organic nitro-reductase by aureomycin in cell-free extracts. Proc. Soc. exp. Biol. (N.Y.) 82, 783 (1953).

    CAS  Google Scholar 

  • Saz, A. K., and L. M. Martinez: Enzymatic basis of resistance to aureomycin. 1. Differences between flavoprotein nitro reductase of sensitive and resistant Escherichia coli. J. biol. Chem. 223, 285 (1956).

    CAS  Google Scholar 

  • Saz, A. K., and R. B. Slie: The inhibition of organic nitro reductase by aureomycin in cell-free extracts. 2. Cofactor requirements for the nitro reductase enzyme complex. Arch. Biochem. 51, 5 (1954).

    PubMed  CAS  Google Scholar 

  • Saz, A. K., and R. B. Slie: Reversal of aureomycin inhibition of bacterial cell-free nitro reductase by manganese. J. biol. Chem. 210, 407 (1954).

    PubMed  CAS  Google Scholar 

  • Schanberg, S., and N. J. Giarman: Uptake of 5-hydroxytryptophan by rat’s brain. Biochim. biophys. Acta 41, 556 (1960).

    CAS  Google Scholar 

  • Schneider, J. H., and V. R. Potter: Nucleotide metabolism. Viii. Heterogenous labelling in ribonucleic acid of rat liver. J. biol. Chem. 233, 154 (1958).

    PubMed  CAS  Google Scholar 

  • Schwartzman, G.: On the nature of refractoriness of certain gram-negative bacilli to penicillin. Science 101, 276 (1945).

    Google Scholar 

  • Sharon, N., and F. Lipmann: Reactivity of analogs with pancreatic tryptophan-activating enzyme. Arch. Biochem. 69, 219 (1957).

    PubMed  CAS  Google Scholar 

  • Sheinin, R., and B. F. Crocker: The induced concurrent formation of a-galactosidase and ß-galactosidase in Escherichia coli B. Canad. J. Biochem. 39, 63 (1961).

    CAS  Google Scholar 

  • Sheinin, R., and K. Mc Quillen: Effect of penicillin on induced enzyme formation in normal cells and spherical forms of E. coli. Biochim. biophys. Acta 31, 72 (1959).

    CAS  Google Scholar 

  • Shiraki, S.: Studies on the adaptive enzyme system of Mycobacterium avium. Nagoya J. med. Sci. 22, 315 (1959).

    CAS  Google Scholar 

  • Siekevitz, P.: On the meaning of intracellular structure for metabolic regulation. Ciba Foundation Sympos. on the regulation of cell metabolism, p. 17. London: J. & A. Churchill Ltd. 1959.

    Google Scholar 

  • Silberman, H., and J. B. Wyngaarden: Mercaptopurine as substrate and inhibitor of xanthine oxidase. Biochim. biophys. Acta 47, 178 (1961).

    CAS  Google Scholar 

  • Skoda, J., J. Kara, Z. Sormova and F. Sorm: Inhibition of Escherichia coli polynueleotide phosphorylase by 6-azauridine diphosphate. Biochim. biophys. Acta 33, 579 (1959).

    CAS  Google Scholar 

  • Smith, G. N.: The possible modes of action of chlorormycetin. Bact. Rev. 17, 19 (1953).

    Google Scholar 

  • Smith, G. N., C. S. Worrel and A. L. Swanson: Inhibition of bacterial esterases by chloramphenicol (chloromycetin). J. Bact. 58, 803 (1949).

    PubMed  CAS  Google Scholar 

  • Smith, J. D., and R. E. F. Matthews: The metabolism of 8-azapurines. Biochem. J. 66, 323 (1957).

    PubMed  CAS  Google Scholar 

  • Snodgrass, P. J., B. L. Vallee and F. L. Hoch: Effects of silver and mercurials on yeast alcohol dehydrogenase. J. biol. Chem. 235, 504 (1960).

    PubMed  CAS  Google Scholar 

  • Spiegelman, S., H. O. Halvorson and R. Ben-Ishai: Free amino acids and the enzyme-forming mechanism. Symposium on amino acid metabolism (McElroy and Glass, eds.), p. 124. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Stadtman, E. R., G. N. Cohen, G. Le Bras and H. Robichon-Szulmajster: Feed-back inhibition and repression of aspartokinase activity in Escherichia coli and Saccharomyces cerevisiae. J. biol. Chem. 236, 2033 (1961).

    CAS  Google Scholar 

  • Stein, E. A., and E. H. Fischer: Bacillus subtilis a-amylase, a zinc-protein complex. Biochim. biophys. Acta 39, 287 (1960).

    CAS  Google Scholar 

  • Stoeber, F.: Sur la biosynthèse induite de la ß-glucuronidase chez E. coli. C. R. Acad. Sci. (Paris) 244, 950 (1957).

    CAS  Google Scholar 

  • Stoeber, F.: Sur la ß-glucuronide-perméase d’Escherichia coli. C. R. Acad. Sci. (Paris) 244, 1091 (1957).

    CAS  Google Scholar 

  • Stouthamer, A. H.: Glucose and galaktose metabolism in Gluconobacter liquefaciens. Biochim. biophys. Acta 48, 484 (1961).

    CAS  Google Scholar 

  • Strange, R. E.: Induced enzyme synthesis in aqueous suspensions of starved stationary phase Aerobacler aerogenes. Nature (Loud.) 191, 1272 (1961).

    CAS  Google Scholar 

  • Straub, F. B., and A. Ullmann: On the mechanism of amylase synthesis. Biochim. biophys. Acta 23, 665 (1957).

    CAS  Google Scholar 

  • Straus, D. B., and E. Goldwasser: A new synthesis of (32P) uridine 5’-phosphate. Biochim. biophys. Acta 47, 186 (1961).

    CAS  Google Scholar 

  • Suzuxl, K., F. Sawada and Y. Iwama: Effects of chloramphenicol on Rna synthesis in Escherichia coli irradiated with ultraviolet light. Biochim. biophys. Acta 37, 369 (1960).

    Google Scholar 

  • Tabor, H., and A. H. Mehler: Histidase and urocanase. In: Methods in enzymology (Colowick and Kaplan), vol. II, p. 228. New York: Academic Press, 1955.

    Google Scholar 

  • Timm, F.: Zur Entstehung der Penicillinresistenz. Naturwissenschaften 44, 266 (1957).

    Google Scholar 

  • Tomasz, A., and E. Borek: The mechanism of bacterial fragility by 5-fluorouracil: The accumulation of cell wall precursors. Proc. nat. Acad. Sci. (Wash.) 46, 324 (1960).

    CAS  Google Scholar 

  • Torriani, A.: Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim. biophys. Acta 38, 460 (1960).

    CAS  Google Scholar 

  • Touzi, A.: Recherches sur le metabolisme de Colletotrichum oligochaetumCav. et de Colletotrichum lindemuthianum (Sacc. et Magn.). Bri. et Cay. II. Synthèse d’un enzyme d’adaptation: la guanidinase. C.R. Acad. Sci. (Paris) 245, 2077 (1957).

    Google Scholar 

  • Umbarger, H. E.: Some observations on the biosynthetic pathway of isoleucine. In: Amino acid metabolism (Mcelroy and Glass, eds.), p. 442. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Umbarger, H. E.: Evidence for a negative feedback mechanism in the biosynthesis of isoleucine. Science 123, 848 (1956).

    PubMed  CAS  Google Scholar 

  • Umbarger, H. E., and B. Brown: Isoleucine and valine metabolism in E. coli. Vii. A negative feedback mechanism controlling isoleucine biosynthesis. J. biol. Chem. 233, 415 (1958).

    PubMed  CAS  Google Scholar 

  • Ussing, H. H.: Experimental evidence and biological significance of active transport. 12. Colloquium der Ges. für Physiol. Chemie, Mosbach/Baden, 1961, p. 1 Berlin-GöttingenHeidelberg: Springer 1961

    Google Scholar 

  • Vallee, B. L., J. A. Rupley, L. CoOmbs and H. Neurath: The role of zinc in carboxypeptidase. J. biol. Chem. 235, 64 (1960).

    CAS  Google Scholar 

  • Vaughan, M., and D. Steinberg: Incorporation of p-fluorophenyl-alanine into crystalline proteins. Fed. Proc. 17, 328 (1958).

    Google Scholar 

  • Vaughan, M., and D. Steinberg: Incorporation of amino acid analogues into crystalline proteins. Proc. 4th Internat. Congr. Biochem., Vienna, vol. 8, p. 234. New York: Pergamon Press 1959.

    Google Scholar 

  • Vaughan, M., and D. Steinberg: Biosynthetic incorporation of flurorophenylalanine into crystalline proteins. Biochim. biophys. Acta 40, 230 (1960).

    CAS  Google Scholar 

  • Vogel, H. J.: Repression and induction as control mechanisms of enzyme biogenesis: The “adaptive” formation of acetylornithinase. Sympos. Chem. Basis of Heredity (Mcelroy and Glass, eds.), p. 276. Baltimore: Johns Hopkins Press (1957a).

    Google Scholar 

  • Vogel, H. J.: Repressed and induced enzyme formation: a unified hypothesis. Proc. nat. Acad. Sci. (Wash.) 43, 491 (1957b).

    CAS  Google Scholar 

  • Vogel, H. J.: A “pace-setting” phenomenon in derepressed enzyme formation. Biochem. biophys. Res. Commun. 3, 373 (1960).

    CAS  Google Scholar 

  • Vogel, H., P. H. Abelson and E. T. Bolton: On ornithin and prolin synthesis in Escherichia coli. Biochim. biophys. Acta 11, 584 (1953).

    CAS  Google Scholar 

  • Vogel, H., and D. M. Bonner: On the glutamate-proline-ornithine interrelation in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 40, 688 (1954).

    CAS  Google Scholar 

  • Vogel, H., and D. M. Bonner: Acetylornithinase of Escherichia coli: partial purification and some properties. J. biol. Chem. 218, 97 (1956).

    PubMed  CAS  Google Scholar 

  • Vogel, H., and D. M. Bonner: Handbuch der Pflanzenphysiologie, Bd. Xii (Hrsg. Ruhland), vol. 11, Kap. II. Berlin-Göttingen-Heidelberg: Springer 1960.

    Google Scholar 

  • Vogel, H., and B. D. Davis: Adaptive phenomena in a biosynthetic pathway. Fed. Proc. 11, 485 (1952).

    Google Scholar 

  • Wacker, A., A. Trebst u. FR. Weygand: 5-Bromuracildesoxyribosid, ein Wuchsstoff für Lb. leichmannii und Lb. acidophilus R 26. Z. Naturforsch. 11b, 7 (1956).

    Google Scholar 

  • Wainwright, S. D.: On the development of increased tryptophan synthetase enzyme activity by cell-free extracts of Neurospora crassa. Canad. J. Biochem. 37, 1417 (1959).

    CAS  Google Scholar 

  • Wainwright, S. D., and D. M. Bonner: On the induced synthesis of an enzyme required for biosynthesis of an essential metabolite: induced kynureninase synthesis in Neurospora crassa. Canad. J. Biochem. 37, 741 (1959).

    PubMed  CAS  Google Scholar 

  • Wainwright, S. D., and M. R. Pollocx: Enzyme adaptation in bacteria: fate of nitratase in nitrate-adapted cells grown in the absence of substrate. Brit. J. exp. Path. 30, 190 (1949).

    PubMed  CAS  Google Scholar 

  • Wallenfels, K., O. P. Malhotra u. D. Dabich: Untersuchungen über milchzuckerspaltende Enzyme Viii. Der Einfluß des Kationen-Milieus auf die Aktivität der ß-Galaktosidase von E. coli ML 309. Biochem. Z. 333, 377 (1960).

    PubMed  CAS  Google Scholar 

  • Wallenfels, K., u. H. Sund: Über den Mechanismus der Wasserstoffübertragung mit Pyridinnucleotiden. I. Freie SH-Gruppen und Aktivität bei Alkoholdehydrogenase aus Hefe. Biochem. Z. 329, 17 (1957).

    PubMed  CAS  Google Scholar 

  • Watanabe, Y., and K. SH Mura: Biosynthesis of threonine from homoserine. J. Biochem. (Tokyo) 42, 181 (1955).

    CAS  Google Scholar 

  • Wilbrandt, W.: Zuckertransporte. 12. Colloquium der Ges. für Physiol. Chemie, Mosbach/ Baden, 1961, p. 112. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Williams, R. J. P., F. L. Hoch and B. L. Vallee: The role of zinc in alcohol dehydrogenases. Iii. The kinetics of a time-dependent inhibition of yeast alcohol dehydrogenase by 1,10-phenanthroline. J. biol. Chem. 232, 465 (1958).

    PubMed  CAS  Google Scholar 

  • Wisseman, C. L., J. E. Smadel, F. E. Hahn and H. E. Hopps: Mode of action of chloramphenicol. I. Action of chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in E. coli. J. Bact. 67, 662 (1954).

    PubMed  CAS  Google Scholar 

  • Wolfe, A. D., and F. E. Hahn: Discrepancy between thienylalanine activation and protein synthesis in bacteria. Biochim. biophys. Acta 41, 545 (1960).

    CAS  Google Scholar 

  • Woolley, D. W.: A study of non-competitive antagonism with chloromycetin and related analogues of phenylalanine. J. biol. Chem. 185, 293 (1950).

    PubMed  CAS  Google Scholar 

  • Woolley, D. W.: Selective toxicity of 1,2-dichloro-4,5-diamino-benzene: its relation to requirements for riboflavin and vitamin B12. J. exp. Med. 93, 13 (1951).

    PubMed  CAS  Google Scholar 

  • Woolley, D. W.: The designing of antimetabolites. 8th Sympos. Soc. Gen. Microbiol., London 1958: The strategy of chemotherapy, p. 139. Cambridge: Cambridge Univ. Press 1958.

    Google Scholar 

  • Woolley, D. W., and D. W. Schaffner: Effect of analogs of dimethyl-diaminobenzene on various strains of transplanted mammary cancers of mice. Cancer Res. 14, 802 (1954).

    PubMed  CAS  Google Scholar 

  • Wormser, E. H., and A. B. Pardee: Regulation of threonine biosynthesis in E. coli. Arch. Biochem. 78, 416 (1958).

    PubMed  CAS  Google Scholar 

  • Yanofsky, C., and M. Racrmeler: The exclusion of free indole as an intermediate in the biosynthesis of tryptophan in Neurospora crassa. Biochim. biophys. Acta 28, 640 (1958).

    CAS  Google Scholar 

  • Yates, R. A., and A. B. Pardee: Pyrimidine biosynthesis in Escherichia coli. J. biol. Chem. 221, 743 (1956).

    PubMed  CAS  Google Scholar 

  • Yates, R. A., and A. B. Pardee: Control of pyrimidine biosynthesis in E. coli by a feed-back mechanism. J. biol. Chem. 221, 757 (1956).

    PubMed  CAS  Google Scholar 

  • Yates, R. A., and A. B. Pardee: Control by uracil of formation of enzymes required for orotate synthesis. J. biol. Chem. 227, 677 (1957).

    PubMed  CAS  Google Scholar 

  • Yeas, M., and G. Brawerman: Interrelations between nucleic acid and protein biosynthesis in microorganisms. Arch. Biochem. 68, 118 (1957).

    Google Scholar 

  • Yoshida, A.: Studies on the mechanism of protein synthesis: bacterial a-amylase containing ethionine. Biochim. biophys. Acta 29, 213 (1958).

    CAS  Google Scholar 

  • Yoshida, A.: Studies on the mechanism of protein synthesis: incorporation of p-fluorophenylalanine into a-amylase of Bacillus subtilis. Biochim. biophys. Acta 41, 98 (1960).

    CAS  Google Scholar 

  • Yoshida, A., and M. Yamasaki: Studies on the mechanism of protein synthesis: incorporation of ethionine into a-amylase of Bacillus subtilis. Biochim. biophys. Acta 34, 158 (1959).

    CAS  Google Scholar 

  • Yoshiikawa, H., and B. Maruo: Stimulation of amylase formation by an amine from Bacillus subtilis. Biochim. biophys. Acta 45, 270 (1960).

    Google Scholar 

  • Zador, ST.: Redox potential studies on the action-mechanism of antibiotics. Jap. J. Pharmacol. 9, 75 (1959).

    PubMed  CAS  Google Scholar 

  • Zubay, G.: The interaction of nucleic acid with Mg-ions. Biochim. biophys. Acta 32, 233 (1959).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1962 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leiner, M. (1962). Über die Stoffwechselregulation in der Zelle. In: Henle, W., Kikuth, W., Meyer, K.F., Nauck, E.G., Tomcsik, J. (eds) Ergebnisse der Mikrobiologie Immunitätsforschung und Experimentellen Therapie. Current Topics in Microbiology and Immunology, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-42624-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-42624-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02812-3

  • Online ISBN: 978-3-662-42624-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics