Skip to main content

Quasikonforme Abbildungen mit vorgeschriebener komplexer Dilatation

  • Chapter
Quasikonforme Abbildungen

Part of the book series: Die Grundlehren der Mathematischen Wissenschaften ((GL,volume 126))

  • 61 Accesses

Zusammenfassung

Als Maß für die lokale Verzerrung unter einer quasikonformen Abbildung haben wir im vorigen Kapitel die komplexe Dilatation eingeführt. Diese ist eine Boreische Funktion, deren Definitionsbereich aus den regulären Punkten der Abbildung, d. h. aus fast allen Punkten des abzubildenden Gebietes, besteht und deren Betrag unter einer Schranke kleiner als Eins liegt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Für ein viertes naheverwandtes Problem s. Renggli [1].

    Google Scholar 

  2. Man bemerke, daß das Komplement einer kompakten Menge vom Längenmaß Null zusammenhängend ist.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1965 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lehto, O., Virtanen, K.I. (1965). Quasikonforme Abbildungen mit vorgeschriebener komplexer Dilatation. In: Quasikonforme Abbildungen. Die Grundlehren der Mathematischen Wissenschaften, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-42594-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-42594-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-42595-4

  • Online ISBN: 978-3-662-42594-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics