Skip to main content

Diversity of Sodium Channels in Adult and Cultured Cells, in Oocytes and in Lipid Bilayers

  • Chapter
Special Issue on Ionic Channels II

Part of the book series: Reviews of Physiology Biochemistry and Pharmacology ((REVIEWS,volume 115 ))

  • 110 Accesses

Abstract

Ionic channels in biological membranes enable the passive movement of ions between the extra- and intracellular solutions and are generally named after the main permeant ion. Thus open sodium channels are selective for Na + ions and have only minor permeability for other cations and anions. Such Na+-preferring channels are present in electrically excitable membranes of nerve and muscle and also in many inexcitable cells, e. g. epithelial cells (Fuchs et al. 1977; Palmer 1987) and light receptor cells of vertebrate eyes (Yau and Nakatani 1984; Hodgkin et al. 1985). However, this review and the following chapters in this volume are devoted exclusively to voltage-gated channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DJ, Gage PW (1979) Characteristics of sodium and calcium conductance changes produced by membrane depolarization in an Aplysia neurone. J Physiol (Lond) 289:143–161

    CAS  Google Scholar 

  • Adelman Jr WJ, Palti Y (1969) The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid, Loligo pealei. J Gen Physiol 54:589–606

    PubMed  CAS  Google Scholar 

  • Aldrich RW (1986) Voltage-dependent gating of sodium channels: towards an integrated approach. Trends Neurosci 9:82–86

    CAS  Google Scholar 

  • Aldrich RW, Stevens CF (1983) Inactivation of open and closed sodium channels determined separately. Cold Spring Harbor Symp Quant Biol 48:147–154

    PubMed  Google Scholar 

  • Aldrich RW, Stevens CF (1987) Voltage-dependent gating of single sodium channels from mammalian neuroblastoma cells. J Neurosci 7:418–431

    PubMed  CAS  Google Scholar 

  • Aldrich RW, Corey DP, Stevens CF (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306:436–441

    PubMed  CAS  Google Scholar 

  • Aimers W (1978) Gating currents and charge movements in excitable membranes. Rev Physiol Biochem Pharmacol 82:96–190

    Google Scholar 

  • Almers W, Stanfield PR, Stühmer W (1983) Slow changes in currents through sodium channels in frog muscle membrane. J Physiol (Lond) 339:253–271

    CAS  Google Scholar 

  • Aimers W, Roberts WM, Ruff RL (1984) Voltage clamp of rat and human skeletal muscle: measurements with an improved loose-patch technique. J Physiol (Lond) 347:751–768

    Google Scholar 

  • Antoni H, Böcker D, Eickhorn R (1988) Sodium current kinetics in intact rat papillary muscle: measurements with the loose-patch-clamp technique. J Physiol (Lond) 406:199–213

    CAS  Google Scholar 

  • Arispe N, Jaimovich E, Liberona JL, Rojas E (1988) Use of selective toxins to separate surface and tubular sodium currents in frog skeletal muscle fibers. Pflügers Arch 411:1–7

    PubMed  CAS  Google Scholar 

  • Armstrong CM (1978) Models of gating current and sodium conductance inactivation. In: Morad M, Smith S (eds) Biophysical aspects of cardiac muscle. Academic Press, New York

    Google Scholar 

  • Armstrong CM, Bezanilla F (1974) Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol 63:533–552

    PubMed  CAS  Google Scholar 

  • Armstrong CM, Bezanilla F (1977) Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol 70:567–590

    PubMed  CAS  Google Scholar 

  • Armstrong CM, Bezanilla F, Rojas E (1973) Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol 62:375–391

    PubMed  CAS  Google Scholar 

  • Armstrong CM, Croop RS (1982) Simulation of Na channel inactivation by thiazin dyes. J Gen Physiol 80:641–662

    PubMed  CAS  Google Scholar 

  • Avenet P, Lindemann B (1987) Patch-clamp study of isolated taste receptor cells of the frog. J Membr Biol 97:223–240

    PubMed  CAS  Google Scholar 

  • Barchi RL (1983) Protein components of the purified sodium channel from rat skeletal muscle sarcolemma. J Neurochem 40:1377–1385

    PubMed  CAS  Google Scholar 

  • Barchi RL (1987) Sodium channel diversity: subtle variations on a complex theme. Trends Neurosci 10:221–223

    CAS  Google Scholar 

  • Barnes S, Hille B (1988) Veratridine modifies open sodium channels. J Gen Physiol 91:421–443

    PubMed  CAS  Google Scholar 

  • Bean BP (1981) Sodium channel inactivation in the crayfish giant axon. Must channels open before inactivating? Biophys J 35:595–614

    PubMed  CAS  Google Scholar 

  • Bekkers JM, Greeff NG, Keynes RD (1986) The conductance and density of sodium channels in the cut-open squid giant axon. J Physiol (Lond) 377:463–486

    CAS  Google Scholar 

  • Benndorf K, Nilius B (1987) Inactivation of sodium channels in isolated myocardial mouse cells. Eur Biophys J 15:117–127

    PubMed  CAS  Google Scholar 

  • Benndorf K, Boldt W, Nilius B (1985) Sodium current in single myocardial mouse cells. Pflügers Arch 404:190–196

    PubMed  CAS  Google Scholar 

  • Benoit E, Dubois JM (1985) Cooperativity of tetrodotoxin action in the frog node of Ranvier. Pflügers Arch 405:237–243

    PubMed  CAS  Google Scholar 

  • Benoit E, Dubois JM (1987) Interactions of guanidinium ions with sodium channels in frog myelinated nerve fibre. J Physiol (Lond) 391:85–97

    CAS  Google Scholar 

  • Benoit E, Corbier A, Dubois JM (1985) Evidence for two transient sodium currents in the frog node of Ranvier. J Physiol (Lond) 361:339–360

    CAS  Google Scholar 

  • Bergman C, Dubois JM, Rojas E, Rathmayer W (1976) Decreased rate of sodium conductance inactivation in the node of Ranvier induced by a polypeptide toxin from sea anemone. Biochim Biophys Acta 455:173–184

    PubMed  CAS  Google Scholar 

  • Bezanilla F (1985) Gating of sodium and potassium channels. J Membr Biol 88:97–111

    PubMed  CAS  Google Scholar 

  • Bezanilla F (1987) Single sodium channels from the squid giant axon. Biophys J 52:1087–1090

    PubMed  CAS  Google Scholar 

  • Bezanilla F, Armstrong CM (1977) Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol 70:549–566

    PubMed  CAS  Google Scholar 

  • Brismar T (1977) Slow mechanism for sodium permeability inactivation in myelinated nerve fibre of Xenopus laevis. J Physiol (Lond) 270:283–297

    CAS  Google Scholar 

  • Brown AM, Lee KS, Powell T (1981) Voltage clamp and internal perfusion of single rat heart muscle cells. J Physiol (Lond) 318:455–477

    CAS  Google Scholar 

  • Bullock JO, Schauf CL (1978) Combined voltage-clamp and dialysis of Myxicola axons: behaviour of membrane asymmetry currents. J Physiol (Lond) 278:309–324

    CAS  Google Scholar 

  • Bullock JO, Schauf CL (1979) Immobilization of intramembrane charge in Myxicola giant axons. J Physiol (Lond) 286:157–171

    CAS  Google Scholar 

  • Cachelin AB, De Peyer JE, Kokubun S, Reuter H (1983) Sodium channels in cultured cardiac cells. J Physiol (Lond) 340:389–401

    CAS  Google Scholar 

  • Campbell DT (1983) Sodium channel gating currents in frog skeletal muscle. J Gen Physiol 82:679–701

    PubMed  CAS  Google Scholar 

  • Campbell DT, Hille B (1976) Kinetic and pharmacological properties of the sodium channel of frog skeletal muscle. J Gen Physiol 67:309–323

    PubMed  CAS  Google Scholar 

  • Carbone E, Lux HD (1986) Na channels in cultured chick dorsal root ganglion neurons. Eur Biophys J 13:259–271

    CAS  Google Scholar 

  • Carmeliet E (1987) Slow inactivation of the sodium current in rabbit cardiac Purkinje fibres. Pflügers Arch 408:18–26

    PubMed  CAS  Google Scholar 

  • Chandler WK, Meves H (1970 a) Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution. J Physiol (Lond) 211:653–678

    CAS  Google Scholar 

  • Chandler WK, Meves H (1970 b) Slow changes in membrane permeability and long-lasting action potentials in axons perfused with fluoride solutions. J Physiol (Lond) 211:707–728

    CAS  Google Scholar 

  • Chinn K, Narahashi T (1986) Stabilization of sodium channel states by deltamethrin in mouse neuroblastoma cells. J Physiol (Lond) 380:191–207

    CAS  Google Scholar 

  • Chiu SY (1977) Inactivation of sodium channels: second order kinetics in myelinated nerve. J Physiol (Lond) 273:573–596

    CAS  Google Scholar 

  • Chiu SY (1980) Asymmetry currents in the mammalian myelinated nerve. J Physiol (Lond) 309:499–519

    CAS  Google Scholar 

  • Clark RB, Giles W (1987) Sodium current in single cells from bullfrog atrium: voltage dependence and ion transfer properties. J Physiol (Lond) 391:235–265

    CAS  Google Scholar 

  • Cohen CJ, Bean BP, Colatsky TJ, Tsien RW (1981) Tetrodotoxin block of sodium channels in rabbit Purkinje fibers: interactions between toxin binding and channel gating. J Gen Physiol 78:383–411

    PubMed  CAS  Google Scholar 

  • Collins CA, Rojas E (1982) Temperature dependence of the sodium channel gating kinetics in the node of Ranvier. Q J Exp Physiol 67:41–55

    PubMed  CAS  Google Scholar 

  • Collins CA, Rojas E, Suarez-Isla BA (1982a) Activation and inactivation characteristics of the sodium permeability in muscle fibres from Rana temporaria. J Physiol (Lond) 324:297–318

    CAS  Google Scholar 

  • Collins CA, Rojas E, Suarez-Isla BA (1982b) Fast charge movements in skeletal muscle fibres from Rana temporaria. J Physiol (Lond) 324:319–345

    CAS  Google Scholar 

  • Conti F, Stühmer W (1989) Quantal charge redistributions accompanying the structural transitions of sodium channels. Eur Biophys J 17:53–59

    PubMed  CAS  Google Scholar 

  • Conti F, DeFelice LJ, Wanke E (1975) Potassium and sodium ion current noise in the membrane of the squid giant axon. J Physiol (Lond) 248:45–82

    CAS  Google Scholar 

  • Conti F, Hille B, Neumcke B, Nonner W, Stämpfli R (1976) Measurement of the conductance of the sodium channel from current fluctuations at the node of Ranvier. J Physiol (Lond) 262:699–727

    CAS  Google Scholar 

  • Conti F, Neumcke B, Nonner W, Stämpfli R (1980) Conductance fluctuations from the inactivation process of sodium channels in myelinated nerve fibres. J Physiol (Lond) 308:217–239

    CAS  Google Scholar 

  • Dodge FA, Frankenhaeuser B (1959) Sodium currents in the myelinated nerve fibre of Xenopus laevis investigated with the voltage clamp technique. J Physiol (Lond) 148:188–200

    CAS  Google Scholar 

  • Dubois JM, Schneider MF (1982) Kinetics of intramembrane charge movement and sodium current in frog node of Ranvier. J Gen Physiol 79:571–602

    PubMed  CAS  Google Scholar 

  • Duch DS, Levinson SR (1987) Spontaneous opening at zero membrane potential of sodium channels from eel electroplax reconstituted into lipid vesicles. J Membr Biol 98:57–68

    PubMed  CAS  Google Scholar 

  • Duch DS, Recio-Pinto E, Frenkel C, Urban BW (1988) Human brain sodium channels in bilayers. Mol Brain Res 4:171–177

    Google Scholar 

  • Fenwick EM, Marty A, Neher E (1982) Sodium and calcium channels in bovine chromaffin cells. J Physiol (Lond) 331:599–635

    CAS  Google Scholar 

  • Fishman HM (1985) Relaxations, fluctuations and ion transfer across membranes. Prog Biophys Mol Biol 46:127–162

    PubMed  CAS  Google Scholar 

  • Fox JM (1976) Ultra-slow inactivation of the ionic currents through the membrane of myelinat-ed nerve. Biochim Biophys Acta 426:232–244

    PubMed  CAS  Google Scholar 

  • Frankenhaeuser B (1960) Quantitative description of sodium currents in myelinated nerve fibres of Xenopus laevis. J Physiol (Lond) 151:491–501

    CAS  Google Scholar 

  • Frelin C, Vijverberg HPM, Romey G, Vigne P, Lazdunski M (1984) Different functional states of tetrodotoxin sensitive and tetrodotoxin resistant Na+ channels occur during the in vitro development of rat skeletal muscle. Pflügers Arch 402:121–128

    PubMed  CAS  Google Scholar 

  • French RJ, Horn R (1983) Sodium channel gating: models, mimics, and modifiers. Ann Rev Biophys Bioeng 12:319–356

    CAS  Google Scholar 

  • Fuchs W, Hviid Larsen E, Lindemann B (1977) Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J Physiol (Lond) 267:137–166

    CAS  Google Scholar 

  • Fujii S, Ayer RK Jr, DeHaan RL (1988) Development of the fast sodium current in early embryonic chick heart cells. J Membr Biol 101:209–223

    PubMed  CAS  Google Scholar 

  • Fukushima Y (1981) Identification and kinetic properties of the current through a single Na + channel. Proc Natl Acad Sci USA 78:1274–1277

    PubMed  CAS  Google Scholar 

  • Garber SS, Miller C (1987) Single Na+ channels activated by veratridine and batrachotoxin. J Gen Physiol 89:459–480

    PubMed  CAS  Google Scholar 

  • Gillespie JI, Meves H (1980) The time course of sodium inactivation in squid giant axons. J Physiol (Lond) 299:289–307

    CAS  Google Scholar 

  • Goldman L (1975) Quantitative description of the sodium conductance of the giant axon of Myxicola in terms of a generalized second-order variable. Biophys J 15:119–136

    PubMed  CAS  Google Scholar 

  • Goldman L, Kenyon JL (1982) Delays in inactivation development and activation kinetics in Myxicola giant axons. J Gen Physiol 80:83–102

    PubMed  CAS  Google Scholar 

  • Goldman L, Schauf CL (1972) Inactivation of the sodium current in Myxicola giant axons. Evidence for coupling to the activation process. J Gen Physiol 59:659–675

    PubMed  CAS  Google Scholar 

  • Goldman L, Schauf CL (1973) Quantitative description of sodium and potassium currents and computed action potentials in Myxicola giant axons. J Gen Physiol 61:361–384

    PubMed  CAS  Google Scholar 

  • Gonoi T, Hille B (1987) Gating of Na channels: inactivation modifiers discriminate among models. J Gen Physiol 89:253–274

    PubMed  CAS  Google Scholar 

  • Gonoi T, Ohizumi Y, Nakamura H, Kobayashi J, Catterall WA (1987) The conus toxin geographutoxin II distinguishes two functional sodium channel subtypes in rat muscle cells developing in vitro. J Neurosci 7:1728–1731

    PubMed  CAS  Google Scholar 

  • Gordon D, Merrick D, Auld V, Dunn R, Goldin AL, Davidson N, Catterall WA (1987) Tissue-specific expression of the RI and RII sodium channel subtypes. Proc Natl Acad Sci USA 84:8682–8686

    PubMed  CAS  Google Scholar 

  • Grant AO, Starmer CF (1987) Mechanisms of closure of cardiac sodium channels in rabbit ventricular myocytes: single channel analysis. Circ Res 60:897–913

    PubMed  CAS  Google Scholar 

  • Green WN, Weiss LB, Andersen OS (1984) Batrachotoxin-modified sodium channels in lipid bilayers. Ann NY Acad Sci 435:548–550

    CAS  Google Scholar 

  • Green WN, Weiss LB, Andersen OS (1987) Batrachotoxin-modified sodium channels in planar lipid bilayers. Ion permeation and block. J Gen Physiol 89:841–872

    PubMed  CAS  Google Scholar 

  • Haimovich B, Schotland DL, Fieles WE, Barchi RL (1987) Localization of sodium channel subtypes in adult rat skeletal muscle using channel-specific monoclonal antibodies. J Neurosci 7:2957–2966

    PubMed  CAS  Google Scholar 

  • Hanke W, Boheim G, Barhanin J, Pauron D, Lazdunski M (1984) Reconstitution of highly purified saxitoxin-sensitive Na +-channels into planar lipid bilayers. EMBO J 3:509–515

    PubMed  CAS  Google Scholar 

  • Harris JB, Marshall MW (1973) Tetrodotoxin-resistant action potentials in newborn rat muscle. Nature New Biol 243:191–192

    PubMed  CAS  Google Scholar 

  • Harris JB, Thesleff S (1971) Studies on tetrodotoxin resistant action potentials in denervated skeletal muscle. Acta Physiol Scand 83:382–388

    PubMed  CAS  Google Scholar 

  • Hartshorne RP, Catterall WA (1984) The sodium channel from rat brain: purification and subunit composition. J Biol Chem 259:1667–1675

    PubMed  CAS  Google Scholar 

  • Hille B (1976) Gating in sodium channels of nerve. Ann Rev Physiol 38:139–152

    CAS  Google Scholar 

  • Hille B (1984) Ionic channels of excitable membranes. Sinauer Inc, Sunderland Massachusetts USA

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500–544

    CAS  Google Scholar 

  • Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol (Lond) 116:424–448

    CAS  Google Scholar 

  • Hodgkin AL, McNaughton PA, Nunn BJ (1985) The ionic selectivity and calcium dependence of the light-sensitive pathway in toad rods. J Physiol (Lond) 358:447–468

    CAS  Google Scholar 

  • Horn R, Vandenberg CA (1984) Statistical properties of single sodium channels. J Gen Physiol 84:505–534

    PubMed  CAS  Google Scholar 

  • Horn R, Vandenberg CA (1986) Inactivation of single sodium channels. In: Ritchie JM, Keynes RD, Bolis L (eds) Ion channels in neural membranes. Alan R Liss, New York

    Google Scholar 

  • Horn R, Patlak J, Stevens CF (1981 a) Sodium channels need not open before they inactivate. Nature 291:426–427

    PubMed  CAS  Google Scholar 

  • Horn R, Patlak J, Stevens CF (1981b) The effect of tetramethylammonium on single sodium channel currents. Biophys J 36:321–327

    PubMed  CAS  Google Scholar 

  • Hoyt RC (1963) The squid giant axon: mathematical models. Biophys J 3:399–431

    PubMed  CAS  Google Scholar 

  • Hoyt RC (1968) Sodium inactivation in nerve fibers. Biophys J 8:1074–1097

    PubMed  CAS  Google Scholar 

  • Huang LYM, Moran N, Ehrenstein G (1984) Gating kinetics of batrachotoxin-modified sodium channels in neuroblastoma cells determined from single-channel measurements. Biophys J 45:313–322

    PubMed  CAS  Google Scholar 

  • Isenberg G, Ravens U (1984) The effects of the Anemonia sulcata toxin (ATX II) on membrane currents of isolated mammalian myocytes. J Physiol (Lond) 357:127–149

    CAS  Google Scholar 

  • Jaimovich E, Chicheportiche R, Lombet A, Lazdunski M, Ildefonse M, Rougier O (1983) Differences in the properties of Na+ channels in muscle surface and T-tubular membranes revealed by tetrodotoxin derivatives. Pflügers Arch 397:1–5

    PubMed  CAS  Google Scholar 

  • Jaimovich E, Ildefonse M, Barhanin J, Rougier O, Lazdunski M (1982) Centruroides toxin, a selective blocker of surface Na+ channels in skeletal muscle: voltage-clamp analysis and biochemical characterization of the receptor. Proc Natl Acad Sci USA 79:3896–3900

    PubMed  CAS  Google Scholar 

  • Jakobsson E (1976) An assessment of a coupled three-state kinetic model for sodium conductance changes. Biophys J 16:291–301

    PubMed  CAS  Google Scholar 

  • Jonas P, Vogel W (1988) Temperature dependence of asymmetry currents in peripheral nerve. Pflügers Arch 411 [Suppl No 1]: R162 (Abstract)

    Google Scholar 

  • Kayano T, Noda M, Flockerzi V, Takahashi H, Numa S (1988) Primary structure of rat brain sodium channel III deduced from the cDNA sequence. FEBS Lett 228:187–194

    PubMed  CAS  Google Scholar 

  • Keynes RD (1983) Voltage-gated ion channels in the nerve membrane. The Croonian lecture 1983. Proc R Soc Lond [Biol] 220:1–30

    CAS  Google Scholar 

  • Keynes RD, Kimura JE (1983) Kinetics of activation of the sodium conductance in the squid giant axon. J Physiol (Lond) 336:621–634

    CAS  Google Scholar 

  • Keynes RD, Rojas E (1974) Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J Physiol (Lond) 239:393–434

    CAS  Google Scholar 

  • Keynes RD, Rojas E (1976) The temporal and steady-state relationships between activation of the sodium conductance and movement of the gating particles in the squid giant axon. J Physiol (Lond) 255:157–189

    CAS  Google Scholar 

  • Keynes RD, Greeff NG, vanHelden DF (1982) The relationship between the inactivating fraction of the asymmetry current and gating of the sodium channel in the squid giant axon. Proc R Soc Lond [Biol] 215:391–404

    CAS  Google Scholar 

  • Khodorov BI (1981) Sodium inactivation and drug-induced immobilization of the gating charge in nerve membrane. Prog Biophys Mol Biol 37:49–89

    PubMed  CAS  Google Scholar 

  • Khodorov BI (1985) Batrachotoxin as a tool to study voltage-sensitive sodium channels of excitable membranes. Prog Biophys Mol Biol 45:57–148

    PubMed  CAS  Google Scholar 

  • Khodorov BI, Neumcke B, Schwarz W, Stämpfli R (1981) Fluctuation analysis of Na+ channels modified by batrachotoxin in myelinated nerve. Biochim Biophys Acta 648:93–99

    PubMed  CAS  Google Scholar 

  • Kimura JE, Meves H (1979) The effect of temperature on the asymmetrical charge movement in squid giant axons. J Physiol (Lond) 289:479–500

    CAS  Google Scholar 

  • Kniffki K-D, Siemen D, Vogel W (1981) Development of sodium permeability inactivation in nodal membranes. J Physiol (Lond) 313:37–48

    CAS  Google Scholar 

  • Kobayashi M, Wu CH, Yoshii M, Narahashi T, Nakamura H, Kobayashi J, Ohizumi Y (1986) Preferential block of skeletal muscle sodium channels by geographutoxin II, a new peptide toxin from Conus geographus. Pflügers Arch 407:241–243

    PubMed  CAS  Google Scholar 

  • Kohlhardt M, Fröbe U, Herzig JW (1987) Properties of normal and non-inactivating single cardiac Na+ channels. Proc R Soc Lond [Biol] 232:71–93

    CAS  Google Scholar 

  • Kohlhardt M, Fichtner H, Fröbe U (1988) Predominance of poorly reopening single Na + channels and lack of slow Na+ inactivation in neonatal cardiocytes. J Membr Biol 103:283–291

    PubMed  CAS  Google Scholar 

  • Koppenhöfer E, Schmidt H (1968) Die Wirkung von Skorpiongift auf die Ionenströme des Ran-vierschen Schnürrings. I. Die Permeabilitäten PNa and PK. Pflügers Arch 303:133–149

    PubMed  Google Scholar 

  • Kräfte DS, Snutch TP, Leonard JP, Davidson N, Lester HA (1988) Evidence for the involvement of more than one mRNA species in controlling the inactivation process of rat and rabbit brain Na channels expressed in Xenopus oocytes. J Neurosci 8:2859–2868

    PubMed  Google Scholar 

  • Krueger BK, Worley JF III, French RJ (1983) Single sodium channels from rat brain incorporated into planar lipid bilayer membranes. Nature 303:172–175

    PubMed  CAS  Google Scholar 

  • Krutetskaya ZI, Lonsky AV, Mozhayeva GN, Naumov AP (1978) Two-component nature of the asymmetrical displacement currents in the nerve membrane: the kinetic and pharmacological analysis. Tsitologiya 20:1269–1277 (in Russian)

    CAS  Google Scholar 

  • Kunze DL, Lacerda AE, Wilson DL, Brown AM (1985) Cardiac Na currents and the inactivating, reopening, and waiting properties of single cardiac Na channels. J Gen Physiol 86:691–719

    PubMed  CAS  Google Scholar 

  • Llano I, Bezanilla F (1984) Analysis of sodium current fluctuations in the cut-open squid giant axon. J Gen Physiol 83:133–142

    PubMed  CAS  Google Scholar 

  • Meiri H, Spira G, Sammar M, Namir M, Schwartz A, Komoriya A, Kosower EM, Palti Y (1987) Mapping a region associated with Na channel inactivation using antibodies to a synthetic peptide corresponding to a part of the channel. Proc Natl Acad Sci USA 84:5058–5062

    PubMed  CAS  Google Scholar 

  • Meves H (1974) The effect of holding potential on the asymmetry currents in squid giant axons. J Physiol (Lond) 243:847–867

    CAS  Google Scholar 

  • Meves H (1989) The gating current of the node of Ranvier. In: Narahashi T (ed) Ionic channels II. Plenum Press, New York

    Google Scholar 

  • Meves H, Nagy K (1989) Multiple conductance states of the sodium channel and of other ion channels. Biochim Biophys Acta 988:99–105

    PubMed  CAS  Google Scholar 

  • Meves H, Vogel W (1977) Inactivation of the asymmetrical displacement current in giant axons of Loligo forbesi. J Physiol (Lond) 267:377–393

    CAS  Google Scholar 

  • Moczydlowski E, Garber SS, Miller C (1984) Batrachotoxin-activated Na+ channels in planar lipid bilayers. Competition of the tetrodotoxin block by Na+. J Gen Physiol 84:665–686

    PubMed  CAS  Google Scholar 

  • Moczydlowski E, Olivera BM, Gray WR, Strichartz GR (1986) Discrimination of muscle and neuronal Na-channel subtypes by binding competition between [3H]saxitoxin and μ-conotoxins. Proc Natl Acad Sci USA 83:5321–5325

    PubMed  CAS  Google Scholar 

  • Moolenaar WH, Spector I (1978) Ionic currents in cultured mouse neuroblastoma cells under voltage-clamp conditions. J Physiol (Lond) 278:265–286

    CAS  Google Scholar 

  • Nagy K (1987 a) Evidence for multiple open states of sodium channels in neuroblastoma cells. J Membr Biol 96:251–262

    PubMed  CAS  Google Scholar 

  • Nagy K (1987 b) Subconductance states of single sodium channels modified by chloramine-T and sea anemone toxin in neuroblastoma cells. Eur Biophys J 15:129–132

    PubMed  CAS  Google Scholar 

  • Nagy K (1988) Mechanism of inactivation of single sodium channels after modification by chloramine-T, sea anemone toxin and scorpion toxin. J Membr Biol 106:29–40

    PubMed  CAS  Google Scholar 

  • Nagy K, Kiss T, Hof D (1983) Single Na channels in mouse neuroblastoma cell membrane. Indications for two open states. Pflügers Arch 399:302–308

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Nakajima S, Grundfest H (1965) The action of tetrodotoxin on electrogenic components of squid giant axons. J Gen Physiol 48:985–996

    CAS  Google Scholar 

  • Narahashi T (1964) Restoration of action potential by anodal polarization in lobster giant axons. J Cell Comp Physiol 64:73–96

    CAS  Google Scholar 

  • Narahashi T, Moore JW, Scott WR (1964) Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J Gen Physiol 47:965–974

    PubMed  CAS  Google Scholar 

  • Neumcke B (1982) Fluctuation of Na and K currents in excitable membranes. Int Rev Neurobiol 23:35–67

    PubMed  CAS  Google Scholar 

  • Neumcke B, Stämpfli R (1982) Sodium currents and sodium-current fluctuations in rat myelinated nerve fibres. J Physiol (Lond) 329:163–184

    CAS  Google Scholar 

  • Neumcke B, Stämpfli R (1983) Alteration of the conductance of Na+ channels in the nodal membrane of frog nerve by holding potential and tetrodotoxin. Biochim Biophys Acta 727:177–184

    PubMed  CAS  Google Scholar 

  • Neumcke B, Fox JM, Drouin H, Schwarz W (1976 a) Kinetics of the slow variation of peak sodium current in the membrane of myelinated nerve following changes of holding potential or extracellular pH. Biochim Biophys Acta 426:245–257

    PubMed  CAS  Google Scholar 

  • Neumcke B, Nonner W, Stämpfli R (1976 b) Asymmetrical displacement current and its relation with the activation of sodium current in the membrane of frog myelinated nerve. Pflügers Arch 363:193–203

    PubMed  CAS  Google Scholar 

  • Neumcke B, Nonner W, Stämpfli R (1978) Gating currents in excitable membranes. In: Metcalfe JC (ed) International Review of Biochemistry, Volume 19. University Park Press, Baltimore

    Google Scholar 

  • Neumcke B, Schwarz W, Stämpfli R (1985) Comparison of the effects of Ammonia toxin II on sodium and gating currents in frog myelinated nerve. Biochim Biophys Acta 814:111–119

    PubMed  CAS  Google Scholar 

  • Neumcke B, Schwarz JR, Stämpfli R (1987) A comparison of sodium currents in rat and frog myelinated nerve: normal and modified sodium inactivation. J Physiol (Lond) 382:175–191

    CAS  Google Scholar 

  • Nilius B (1988) Modal gating behavior of cardiac sodium channels in cell-free membrane patches. Biophys J 53:857–862

    PubMed  CAS  Google Scholar 

  • Nilius B, Vereecke J, Carmeliet E (1989) Different conductance states of the bursting Na channel in guinea-pig ventricular myocytes. Pflügers Arch 413:242–248

    PubMed  CAS  Google Scholar 

  • Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N, Kangawa K, Matsuo H, Raftery MA, Hirose T, Inayama S, Hayashida H, Miyata T, Numa S (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127

    PubMed  CAS  Google Scholar 

  • Noda M, Ikeda T, Kayano T, Suzuki H, Takeshima H, Kurasaki M, Takahashi H, Numa S (1986 a) Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320:188–192

    PubMed  CAS  Google Scholar 

  • Noda M, Ikeda T, Suzuki H, Takeshima H, Takahashi T, Kuno M, Numa S (1986b) Expression of functional sodium channels from cloned cDNA. Nature 322:826–828

    PubMed  CAS  Google Scholar 

  • Nonner W (1979) Effects of Leiurus scorpion venom on the “gating” current in myelinated nerve. Adv Cytopharmacol 3:345–352

    PubMed  CAS  Google Scholar 

  • Nonner W (1980) Relations between the inactivation of sodium channels and the immobilization of gating charge in frog myelinated nerve. J Physiol (Lond) 299:573–603

    CAS  Google Scholar 

  • Nonner W, Rojas E, Stämpfli R (1975) Displacement currents in the node of Ranvier. Voltage and time dependence. Pflügers Arch 354:1–18

    PubMed  CAS  Google Scholar 

  • Nonner W, Rojas E, Stämpfli R (1978) Asymmetrical displacement currents in the membrane of frog myelinated nerve: early time course and effects of membrane potential. Pflügers Arch 375:75–85

    PubMed  CAS  Google Scholar 

  • Nonner W, Spalding BC, Hille B (1980) Low intracellular pH and chemical agents slow inactivation gating in sodium channels of muscle. Nature 284:360–363

    PubMed  CAS  Google Scholar 

  • Ochs G, Bromm B, Schwarz JR (1981) A three-state model for inactivation of sodium permeability. Biochim Biophys Acta 645:243–252

    PubMed  CAS  Google Scholar 

  • Offner FF (1972) The excitable membrane. A physicochemical model. Biophys J 12:1583–1629

    PubMed  CAS  Google Scholar 

  • Oiki S, Danho W, Montai M (1988) Channel protein engineering: synthetic 22-mer peptide from the primary structure of the voltage-sensitive sodium channel forms ionic channels in lipid bilayers. Proc Natl Acad Sci USA 85:2393–2397

    PubMed  CAS  Google Scholar 

  • Oxford GS, Pooler JP (1975) Selective modification of sodium channel gating in lobster axon by 2,4,6-trinitrophenol. Evidence for two inactivation mechanisms. J Gen Physiol 66:765–779

    PubMed  CAS  Google Scholar 

  • Palmer LG (1987) Ion selectivity of epithelial Na channels. J Membr Biol 96:97–106

    PubMed  CAS  Google Scholar 

  • Pappone PA (1980) Voltage-clamp experiments in normal and denervated mammalian skeletal muscle fibres. J Physiol (Lond) 306:377–410

    CAS  Google Scholar 

  • Parker I, Sumikawa K, Gundersen CB, Miledi R (1988) Expression of Ach-activated channels and sodium channels by messenger RNAs from innervated and denervated muscle. Proc R Soc Lond [Biol] 233:235–246

    CAS  Google Scholar 

  • Patlak JB (1988) Sodium channel subconductance levels measured with a new variance-mean analysis. J Gen Physiol 92:413–430

    PubMed  CAS  Google Scholar 

  • Patlak JB, Horn R (1982) Effect of N-bromoacetamide on single sodium channel currents in excised membrane patches. J Gen Physiol 79:333–351

    PubMed  CAS  Google Scholar 

  • Patlak JB, Ortiz M (1985) Slow currents through single sodium channels of the adult rat heart. J Gen Physiol 86:89–104

    PubMed  CAS  Google Scholar 

  • Patlak JB, Ortiz M (1986) Two modes of gating during late Na+ channel currents in frog sartorius muscle. J Gen Physiol 87:305–326

    PubMed  CAS  Google Scholar 

  • Patlak JB, Ortiz M, Horn R (1986) Opentime heterogeneity during bursting of sodium channels in frog skeletal muscle. Biophys J 49:773–777

    PubMed  CAS  Google Scholar 

  • Peganov EM, Khodorov BI, Shiskova LD (1973) Slow sodium inactivation related to external potassium in the membrane of Ranvier’s node. The role of external K. Bull Exp Biol med USSR 25:15–19 (in Russian)

    Google Scholar 

  • Plant TD (1988) Na+ currents in cultured mouse pancreatic B-cells. Pflügers Arch 411:429–435

    PubMed  CAS  Google Scholar 

  • Pröbstle T, Rüdel R, Ruppersberg JP (1988) Hodgkin-Huxley parameters of the sodium channels in human myoballs. Pflügers Arch 412:264–269

    PubMed  Google Scholar 

  • Quandt FN (1987) Burst kinetics of sodium channels which lack fast inactivation in mouse neuroblastoma cells. J Physiol (Lond) 392:563–585

    CAS  Google Scholar 

  • Quandt FN, Narahashi T (1982) Modification of single Na+ channels by batrachotoxin. Proc Natl Acad Sci USA 79:6732–6736

    PubMed  CAS  Google Scholar 

  • Ravens U (1976) Electromechanical studies of an Anemonia sulcata toxin in mammalian cardiac muscle. Naunyn-Schmiedeberg’s Arch Pharmacol 296:73–78

    CAS  Google Scholar 

  • Recio-Pinto E, Duch DS, Levinson SR, Urban BW (1987) Purified and unpurified sodium channels from eel electroplax in planar lipid bilayers. J Gen Physiol 90:375–395

    PubMed  CAS  Google Scholar 

  • Rosenberg RL, Tomiko SA, Agnew WS (1984) Single-channel properties of the reconstituted voltage-regulated Na channel isolated from the electroplax of Electrophorus electricus. Proc Natl Acad Sci USA 81:5594–5598

    PubMed  CAS  Google Scholar 

  • Rudy B (1976) Sodium gating currents in Myxicola giant axons. Proc R Soc Lond [Biol] 193:469–475

    CAS  Google Scholar 

  • Ruff RL, Simoncini L, Stühmer W (1987) Comparison between slow sodium channel inactivation in rat slow-and fast-twitch muscle. J Physiol (Lond) 383:339–348

    CAS  Google Scholar 

  • Ruppersberg JP, Rüdel R (1988) Differential effects of halothane on adult and juvenile sodium channels in human muscle. Pflügers Arch 412:17–21

    PubMed  CAS  Google Scholar 

  • Ruppersberg JP, Schure A, Rüdel R (1987) Inactivation of TTX-sensitive and TTX-insensitive sodium channels of rat myoballs. Neurosci Lett 78:166–170

    PubMed  CAS  Google Scholar 

  • Sah P, Gibb AJ, Gage PW (1988) The sodium current underlying action potentials in guinea pig hippocampal CA1 neurons. J Gen Physiol 91:373–398

    PubMed  CAS  Google Scholar 

  • Sakai H, Matsumoto G, Murofushi H (1985) Role of microtubules and axolinin in membrane excitation of the squid giant axon. Adv Biophys 19:43–89

    PubMed  CAS  Google Scholar 

  • Salkoff L, Butler A, Wei A, Scavarda N, Giffen K, Ifune C, Goodman R, Mandel G (1987) Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila. Science 237:744–749

    PubMed  CAS  Google Scholar 

  • Scanley BE, Fozzard HA (1987) Low conductance sodium channels in canine cardiac Purkinje cells. Biophys J 52:489–495

    PubMed  CAS  Google Scholar 

  • Schauf CL, Bullock JO (1979) Modifications of sodium channel gating in Myxicola giant axons by deuterium oxide, temperature, and internal cations. Biophys J 27:193–208

    PubMed  CAS  Google Scholar 

  • Schauf CL, Pencek TL, Davis FA (1976) Slow sodium inactivation in Myxicola axons. Evidence for a second inactive state. Biophys J 16:771–778

    PubMed  CAS  Google Scholar 

  • Schmidt H, Schmitt O (1974) Effect of aconitine on the sodium permeability of the node of Ranvier. Pflügers Arch 349:133–148

    PubMed  CAS  Google Scholar 

  • Schreibmayer W, Kazerani H, Tritthart HA (1987) A mechanistic interpretation of the action of toxin II from Anemonia sulcata on the cardiac sodium channel. Biochim Biophys Acta 901:273–282

    PubMed  CAS  Google Scholar 

  • Schwarz JR (1986) The effect of temperature on Na currents in rat myelinated nerve fibres. Pflügers Arch 406:397–404

    PubMed  CAS  Google Scholar 

  • Schwarz W (1979) Temperature experiments on nerve and muscle membranes of frogs. Indications for a phase transition. Pflügers Arch 382:27–34

    PubMed  CAS  Google Scholar 

  • Sheets MF, Scanley BE, Hanck DA, Makielski JC, Fozzard HA (1987) Open sodium channel properties of single canine cardiac Purkinje cells. Biophys J 52:13–22

    PubMed  CAS  Google Scholar 

  • Shrager P, Chiu SY, Ritchie JM (1985) Voltage-dependent sodium and potassium channels in mammalian cultured Schwann cells. Proc Natl Acad Sci USA 82:948–952

    PubMed  CAS  Google Scholar 

  • Sigel E (1987 a) Properties of single sodium channels translated by Xenopus oocytes after injection with messenger ribonucleic acid. J Physiol (Lond) 386:73–90

    CAS  Google Scholar 

  • Sigel E (1987 b) Effects of veratridine on single neuronal sodium channels expressed in Xenopus oocytes. Pflügers Arch 410:112–120

    PubMed  CAS  Google Scholar 

  • Sigworth FJ (1980) The variance of sodium current fluctuations at the node of Ranvier. J Physiol (Lond) 307:97–129

    CAS  Google Scholar 

  • Sigworth FJ, Neher E (1980) Single Na+ channel currents observed in cultured rat muscle cells. Nature 287:447–449

    PubMed  CAS  Google Scholar 

  • Simoncini L, Stühmer W (1987) Slow sodium channel inactivation in rat fast-twitch muscle. J Physiol (Lond) 383:327–337

    CAS  Google Scholar 

  • Spitzer NC (1979) Ion channels in development. Annu Rev Neurosci 2:363–397

    PubMed  CAS  Google Scholar 

  • Starkus JG, Fellmeth BD, Rayner MD (1981) Gating currents in the intact crayfish giant axon. Biophys J 35:521–533

    PubMed  CAS  Google Scholar 

  • Stevens CF (1986) Analysis of sodium channel function. Prog Zool 33:29–31

    CAS  Google Scholar 

  • Stühmer W, Methfessel C, Sakmann B, Noda M, Numa S (1987) Patch clamp characterization of sodium channels expressed from rat brain cDNA. Eur Biophys J 14:131–138

    PubMed  Google Scholar 

  • Stühmer W, Conti F, Suzuki H, Wang X, Noda M, Yahagi N, Kubo H, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603

    PubMed  Google Scholar 

  • Suzuki H, Beckh S, Kubo H, Yahagi N, Ishida H, Kayano T, Noda M, Numa S (1988) Functional expression of cloned cDNA encoding sodium channel III. FEBS Lett 228:195–200

    PubMed  CAS  Google Scholar 

  • Swenson Jr RP (1980) Gating charge immobilization and sodium current inactivation in internally perfused crayfish axons. Nature 287:644–645

    PubMed  Google Scholar 

  • Swenson Jr RP (1983) A slow component of gating current in crayfish giant axons resembles inactivation charge movement. Biophys J 41:245–249

    PubMed  CAS  Google Scholar 

  • Taylor RE, Bezanilla F (1983) Sodium and gating current time shifts resulting from changes in initial conditions. J Gen Physiol 81:773–784

    PubMed  CAS  Google Scholar 

  • Tejedor FJ, Catterall WA (1988) Site of covalent attachment of α-scorpion toxin derivatives in domain I of the sodium channel α subunit. Proc Natl Acad Sci USA 85:8742–8746

    PubMed  CAS  Google Scholar 

  • Ulbricht W (1977) Ionic channels and gating currents in excitable membranes. Annu Rev Biophys Bioeng 6:7–31

    PubMed  CAS  Google Scholar 

  • Ulbricht W, Schmidtmayer J (1981) Modification of sodium channels in myelinated nerve by Anemonia sulcata toxin II. J Physiol (Paris) 77:1103–1111

    CAS  Google Scholar 

  • Vandenberg CA, Horn R (1984) Inactivation viewed through single sodium channels. J Gen Physiol 84:535–564

    PubMed  CAS  Google Scholar 

  • Vassilev PM, Scheuer T, Catterall WA (1988) Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 241:1658–1661

    PubMed  CAS  Google Scholar 

  • Wang GK (1984) Irreversible modification of sodium channel inactivation in toad myelinated nerve fibres by the oxidant chloramine-T. J Physiol (Lond) 346:127–141

    CAS  Google Scholar 

  • Wang GK, Brodwick MS, Eaton DC (1985) Removal of sodium channel inactivation in squid axon by the oxidant chloramine-T. J Gen Physiol 86:289–302

    PubMed  CAS  Google Scholar 

  • Weiss RE, Horn R (1986) Functional differences between two classes of sodium channels in developing rat skeletal muscle. Science 233:361–364

    PubMed  CAS  Google Scholar 

  • Yamamoto D, Yeh JZ, Narahashi T (1984) Voltage-dependent calcium block of normal and tetramethrin-modified single sodium channel. Biophys J 45:337–343

    PubMed  CAS  Google Scholar 

  • Yau K-W, Nakatani K (1984) Cation selectivity of light-sensitive conductance in retinal rods. Nature 309:352–354

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neumcke, B. (1990). Diversity of Sodium Channels in Adult and Cultured Cells, in Oocytes and in Lipid Bilayers. In: Special Issue on Ionic Channels II. Reviews of Physiology Biochemistry and Pharmacology, vol 115 . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-41884-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41884-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-41743-0

  • Online ISBN: 978-3-662-41884-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics