Two-Dimensional Nonrecursive Filters

  • J. G. Fiasconaro
Part of the Topics in Applied Physics book series (TAP, volume 6)


This chapter deals primarily with four techniques for designing two-dimensional nonrecursive digital filters. These methods include: the use of window functions, frequency sampling, the straightforward application of linear programming, and a new algorithm that was developed by the author. The theory required to understand these four algorithms is presented in Section 3.1. That section discusses general two-dimensional discrete systems, some of the aspects of the theory of linear approximation, and linear programming as it applies to the filter design problem. Section 3.2 contains a detailed description of the four algorithms and gives some examples of filters designed with two of the techniques. A brief summary and some conclusions are presented in Section 3.3.


Frequency Response Discrete Fourier Transform Window Function Filter Design Constraint Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.1.
    H.D. Helms: IEEE Trans. Audio Electroacoust. AU-16, 336 (1968).CrossRefGoogle Scholar
  2. 3.2.
    L.R. Rabiner: IEEE Trans. Commun. Technol. COM-19, 188 (1971).CrossRefGoogle Scholar
  3. 3.3.
    J.F. Kaiser: “Digital Filters”. In System Analysis by Digital Computer, ed. by F. F. Kuo and J. F. Kaiser (J. Wiley, New York, 1966).Google Scholar
  4. 3.4.
    L.R. Rabiner, B. Gold, C.A. Mcgonegal: IEEE Trans. Audio Electroacoust. AU-18, 83 (1970).CrossRefGoogle Scholar
  5. 3.5.
    L.R. Rabiner: IEEE Trans. Audio Electroacoust. AU-20, 280 (1972).CrossRefGoogle Scholar
  6. 3.6.
    E.W. Cheney: Introduction to Approximation Theory (McGraw-Hill, New York, 1966).MATHGoogle Scholar
  7. 3.7.
    O. Herrmann: Electron. Letters 6, (1970).Google Scholar
  8. 3.8.
    E. M. Hofstetter, A.V. Oppenheim, J. Siegal: “A New Technique for the Design of Nonrecursive Digital Filters”, Proc. Fifth Annual Princeton Conference on Information Sciences and Systems (1971).Google Scholar
  9. 3.9.
    T.W. Parks, J.H. Mcclellan: IEEE Trans. Circuit Theory CT-19, 189 (1972).CrossRefGoogle Scholar
  10. 3.10.
    T.S. Huang: IEEE Trans. Audio Electroacoust. AU-20, 158 (1972).CrossRefGoogle Scholar
  11. 3.11.
    J.L. Shanks, S. Treitel, J.H. Justice: IEEE Trans. Audio Electroacoust. AU-20, 115 (1972).CrossRefGoogle Scholar
  12. 3.12.
    E.I. Jury: Theory and Application of the Z-Transform Method (John Wiley, New York, 1964).Google Scholar
  13. 3.13.
    B. Gold, C.M. Rader: Digital Processing of Signals (McGraw-Hill, New York, 1969).MATHGoogle Scholar
  14. 3.14.
    D.C. Hanscomb: “Functions of Many Variables”. In Methods of Numerical Approximation, ed. by D. C. Hanscomb (Pergamon Press, New York, 1966).Google Scholar
  15. 3.15.
    J.R. Rice: The Approximation of Functions, Vol. II (Addison-Wesley, Reading, Mass., 1969).MATHGoogle Scholar
  16. 3.16.
    J.R. Rice: The Approximation of Functions, Vol. I (Addison-Wesley, Reading, Mass., 1964).MATHGoogle Scholar
  17. 3.17.
    E.YA. Remes: General Computational Methods of Tchebycheff Approximation (Kiev, 1967) (Atomic Energy Commission Translation 4491).Google Scholar
  18. 3.18.
    E.L. Stiefel: “Numerical Methods of Tchebycheff Approximation”. In On Numerical Approximation, ed. by R. E. Langer (The University of Wisconsin Press, 1959).Google Scholar
  19. 3.19.
    W.W. Garvin: Introduction to Linear Programming (McGraw-Hill, New York, 1960).Google Scholar
  20. 3.20.
    W.A. Spivey, R.M. Thrall: Linear Optimization (Holt, Rinehart and Winston, New York, 1970).MATHGoogle Scholar
  21. 3.21.
    T.S. Huang: IEEE Trans. Audio Electroacoust. AU-20, 88 (1972).ADSCrossRefGoogle Scholar
  22. 3.22.
    A. Papoulis: Systems and Transforms with Applications in Optics (McGraw-Hill, New York, 1968).Google Scholar
  23. 3.23.
    L.R. Rabiner: “Processing of Two-Dimensional Signals”. In Digital Signal Processing by L. R. Rabiner and B. Gold (unpublished).Google Scholar
  24. 3.24.
    J.V. Hu, L.R. Rabiner: IEEE Trans. Audio Electroacoust. AU-20, 249 (1972).CrossRefGoogle Scholar
  25. 3.25.
    J.V. Hu: “Frequency Sampling Design of Two-Dimensional Finite Impulse Response Digital Filters”, M.I.T. S.M. Thesis, E.E. Dept. (1972).Google Scholar
  26. 3.26.
    IBM System/360 Scientific Subroutine Package (360A-CM-03X), Version III, Programmer’s Manual.Google Scholar
  27. 3.27.
    W.E. Milne, W. Arntzen, N. Reynolds, J. Wheelock: “Mathematics for Digital Computers, Vol. 1: Multivariate Interpolation”, WADC Technical Report 57-556 (1958) ASTIA Document No. AD 131033.Google Scholar
  28. 3.28.
    H.C. Thacher, Jr., W.E. Milne: J. SOC. Indust. Appl. Math. 8, 33 (1960).MathSciNetCrossRefMATHGoogle Scholar
  29. 3.29.
    R.B. Guenther, E.L. Roetman: Math, of Computation 24, 517 (1970).MathSciNetCrossRefGoogle Scholar
  30. 3.30.
    N.M. Brenner: “Three Fortran Programs that Perform the Cooley-Tukey Fourier Transform”, Technical Note 1967-2, Lincoln Laboratory, M.I.T. (July, 1967).Google Scholar
  31. 3.31.
    L.R. Rabiner, R.W. Schafer, C.M. Rader: IEEE Trans. Audio Electroacoust. AU-17, 86 (1969).CrossRefGoogle Scholar
  32. 3.32.
    R.W. Hamming: Numerical Methods for Scientists and Engineers (McGraw-Hill, New York, 1962).MATHGoogle Scholar
  33. 3.33.
    T.J. Rivlin, H.S. Shapiro: Comm. Pure Appl. Math. 13, 35 (1960).MathSciNetCrossRefMATHGoogle Scholar

Additional References

  1. Y. Kamp, J.P. Thiran: Maximally flat nonrecursive two-dimensional digital filters. IEEE Trans. Circuits and Systems CAS-21, No. 3, 437–449 (1974).MathSciNetCrossRefGoogle Scholar
  2. Y. Kamp, J. P. Thiran: Chebyshev approximation for two-dimensional nonrecursive digital filters. IEEE Trans. Circuits and Systems CAS-22, No. 3, 208–218 (1975).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • J. G. Fiasconaro

There are no affiliations available

Personalised recommendations