Skip to main content

Lösung gemischt-ganzzahliger Planungsprobleme

  • Chapter
Computergestützte Planungssysteme

Zusammenfassung

Sehr viele wichtige Planungsprobleme können als gemischt-ganzzahlige Programme formuliert werden. Mit Hilfe binärer Variablen lassen sich diskrete Alternativen, komplexe logische Bedingungen und nicht-stetige Funktionen darstellen. Eine Reihe von Tricks erlauben es, auch nichtlineare Bedingungen und Funktionen zu linearisieren, vgl. [22], [33], [69]. Die Zahl der möglichen Anwendungen umfaßt den gesamten betrieblichen Bereich, von der Einkaufsplanung über die Produktions- bis zur Investitions- und Finanzplanung. Standortwahl, Tourenplanung, Maschinenbelegung, Projektplanung bei Kapazitätsbeschränkungen sind nur einige Beispiele, die (zumindest theoretisch) als gemischt-ganzzahlige Programme formuliert werden können, und die Liste der veröffentlichten Modelle wächst täglich, vgl. z.B. [4], [31], [54], [55], [56], [59], [70].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturhinweise

  1. APEX III Reference Manual, Control Data Corporation, Ref. No. 760 70000 Rev. D., Minneapolis 1975.

    Google Scholar 

  2. Armstrong, R.D., and P. Sinha: Improved penalty calculation for a mixed integer branch-and-bound algorithm, Mathematical Programming 6, 1974, 212–223.

    Article  MATH  MathSciNet  Google Scholar 

  3. Ashour, S.: An experimental investigation and computational evaluation of flow shop scheduling problems, Operations Research 18, 1970, 541–549.

    Article  MATH  Google Scholar 

  4. Baker, K.R.: Introduction to sequencing and scheduling, New York 1974.

    Google Scholar 

  5. Balas, E.: An additive algorithm for solving linear programs with zero-one variables, Operations Research 13, 1965, 517–546.

    Article  MathSciNet  Google Scholar 

  6. Balas, E.: Discrete programming by the filter method, Operations Research 15, 1967, 915–957.

    Article  MATH  MathSciNet  Google Scholar 

  7. Balas, E.: Integer programming and convex analysis: Intersection cuts from outer polars, Mathematical Programming 2, 1972, 330–382.

    Article  MATH  MathSciNet  Google Scholar 

  8. Balinski, M.L.: Integer programming: methods, uses, computation, Management Science 12 (3), 1965, 253–313;

    Article  MATH  MathSciNet  Google Scholar 

  9. Balinski, M.L., and K. Spielberg: Methods for integer programming: algebraic, combinatorial and enumerative, in J.S. Aronofsky (ed.), Progress in Operations Research, Vol. III, New York 1969.

    Google Scholar 

  10. Barr, R.S., and G.T. Ross: A linked list data structure for a binary knapsack algorithm, Research Report ccs 232, Center for Cybernetic Studies, University fo Texas, 1975.

    Google Scholar 

  11. Beale, E.M.L.: Mathematical Programming in Practice, London 1968.

    Google Scholar 

  12. Beale, E.M.L.: Advanced algorithmic features for general mathematical programming systems, in Integer and Nonlinear Programming (J. Abadie, Ed.) 1970, 119–137.

    Google Scholar 

  13. Beale, E.M.L., and R.E. Small: Mixed integer programming by a branch and bound technique, in Proc. IFIP Congress 1965 (W. Kalench, Ed.) 2, 450–451, London 1965.

    Google Scholar 

  14. Beale, E.M.L., and J.A Tomlin: Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables, in Proc. 5th IFORS Conference, (J. Lawrence, Ed.), 447–454, London 1970.

    Google Scholar 

  15. Beale, E.M.L., and J.A. Tomlin: An integer programming approach to a class of combinatorial problem, Mathematical Programming 3 (2), 1972, 339–344.

    Article  MATH  MathSciNet  Google Scholar 

  16. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems, Numerische Mathematik 4, 1962, 238–252.

    Article  MATH  MathSciNet  Google Scholar 

  17. Bénichou, M., J.M. Gauthier, P. Girodet, G. Hentges, G. Riebiere, and O. Vincent: Experiments in mixed-integer linear programming, Mathematical Programming 1 (1), 1971, 76–94.

    Article  MATH  MathSciNet  Google Scholar 

  18. Breu, R., and C.-A. Burdet: Branch and bound experiments in zero-one programming, in Approaches to Integer Programming, (M.L. Balinski, Ed.), 1974, 1–50.

    Chapter  Google Scholar 

  19. Brown, A.R.: Optimum Packing and Depletion, 1971.

    MATH  Google Scholar 

  20. Childress, J.P.: Five petrochemical industry applications of mixed integer programming, Bonner & Moore Associates, Inc., Houston 1969.

    Google Scholar 

  21. Dakin, R.J.: A tree search algorithm for mixed integer programming problems, Computer Journal 8 (3), 1965, 250–255.

    Article  MATH  MathSciNet  Google Scholar 

  22. Dantzig, G.: On the significance of solving linear programming problems with some integer variables, Econometrica 28, 1960, 30–44.

    Article  MATH  MathSciNet  Google Scholar 

  23. Davies, R.E., D.A. Kendrick, and M. Weitzmann: A branch and bound algorithm for zero-one mixed integer programming problems, Operations Research 19, 1971, 1036–1044.

    Article  MathSciNet  Google Scholar 

  24. De Maio, A., and C. Roveda: An all zero-one algorithm for a certain class of transportation problems, Operations Research 19 (6), 1971, 1406–1418.

    Article  MATH  Google Scholar 

  25. Driebeek, N.J.: An algorithm for the solution of mixed integer programming problems, Management Science 12, 1966, 576–587.

    Article  Google Scholar 

  26. Fisher, M.L.: Optimal solution of scheduling problems using Lagrange multipliers: Part I, Operations Research 21, 1973, 1114–1127.

    Article  MATH  MathSciNet  Google Scholar 

  27. Fisher, M.L., W.D. Northup, and J.F. Shapiro: Using duality to solve discrete optimization problems: Theory and computational experience, Working Paper OR 030–74, Operations Research Center, M.I.T. 1974.

    Google Scholar 

  28. Fleischmann, B.: Computational Experience with the algorithm of Balas, Operations Research 15 (1), 1967,153–155.

    Article  Google Scholar 

  29. Fleischmann, B.: Eine primale Version des Bender’schen Dekompositionsverfahrens und seine Anwendung in der Gemischt-Ganzzahligen Optimierung, in Collatz, L., und Wetterüng, W., Numerische Methoden bei Optimierungsaufgaben, 1973.

    Google Scholar 

  30. Forrest, J.J.H., J.P.H. Hirst, and J.A. Tomlin: Practical solution of large mixed integer programming problems with UMPIRE, Management Science 20 (5), 1974, 736–773.

    Article  MATH  MathSciNet  Google Scholar 

  31. Freeman, R., D. Grogerty, R. Graves, and R. Brooks: A mathematical model of supply support for space operations, Operations Research 14, 1966, 1–15.

    Article  Google Scholar 

  32. Garfinkel, R.S., and G.L. Nemhauser: The set partitioning problem: Set covering with equality constraints, Operations Research 17, 1969, 848–856.

    Article  MATH  Google Scholar 

  33. Garfinkel, R.S., and G.L. Nemhauser: Integer Programming, 1972.

    MATH  Google Scholar 

  34. Geoffrion, A.M.: Integer programming by implicit enumeration and Balas’method, SIAM Rieview 9 (2), 1967, 178–190.

    Article  MATH  MathSciNet  Google Scholar 

  35. Geoffrion, A.M.: An improved implicit enumeration approach for integer programming, Operations Research 17 (3), 1969,437–454.

    Article  MATH  Google Scholar 

  36. Geoffrion, A.M.: Generalized Benders decompostion, Working Paper No. 159, W. Management Science Institute, UCLA, 1970.

    Google Scholar 

  37. Geoffrion, A.M., and C.W. Graves: Multicommodity distribution system design by Benders decomposition, Management Science 20 (5), 1974, 822–844.

    Article  MATH  MathSciNet  Google Scholar 

  38. Geoffrion, A.M., and R.E. Marsten: Integer programming algorithms: A framework and state-of-the-art Survey, Management Science 18, 1972, 465–491.

    Article  MATH  MathSciNet  Google Scholar 

  39. Glover, F.: A multiphase-dual algorithm for the zero-one integer programming problem, Operations Research 13 (6), 1965, 879–919.

    Article  MATH  MathSciNet  Google Scholar 

  40. Glover, F.: Surrogate constraints, Operations Research 16, 1968, 741–749.

    Article  MATH  MathSciNet  Google Scholar 

  41. Glover, F., and D. Klingman: Real world applications of network related problems and breakthroughs in solving them efficiently, ACM Trans. Math. SW, 1 (1), 1975, 47–55.

    MATH  Google Scholar 

  42. Glover, F., and S. Zionts: A note on the additive algorithm of Balas, Operations Research 13, 1965, 546–549.

    Article  MathSciNet  Google Scholar 

  43. Glover, F., D. Karney, D. Klingman, and A. Napier: A computation study on start procedures, basis change criteria, and solution algorithms for transportation problems, Management Science 20, 1974, 793–813.

    Article  MATH  MathSciNet  Google Scholar 

  44. Held, M., and R.M. Karp: The traveling salesman problem and minimum spanning trees, Operations Research 18, 1970, 1138–1162.

    Article  MATH  MathSciNet  Google Scholar 

  45. Held, M., and R.M. Karp: The traveling salesman problem and minimum spanning trees: Part II, Mathematical Programming 1, 6–25.

    Google Scholar 

  46. Healey, W.C., Jr.: Multiple choice programming, Operations Research 12, 1964, 122–138.

    Article  MathSciNet  Google Scholar 

  47. Ingargiola, G.P., and J.F. Korsh: Reduction algorithm for zero-one single knapsack problems, Management Science 20 (4), 1973, 460–463;

    Article  MATH  Google Scholar 

  48. Johnson, E.L.: The group theoretic problem for mixed integer programming, in Approaches to Integer Programming (Balinski, MX., Ed.), 1974.

    Google Scholar 

  49. Klingman, D.: Network applications in industry and government, Center for Cybernetic Studies. University of Texas at Austin, 1975.

    Google Scholar 

  50. Knuth, D.E.: The art of computer programming, Vol. 1, 1969.

    Google Scholar 

  51. Korte, B., W. Krelle und W. Oberhofer: Ein lexikographischer Suchalgorithmus zur Lösung allgemeiner Programmierungsaufgaben, I, II, Unternehmensforschung 13, 1969, 73–98, 171–192.

    MATH  Google Scholar 

  52. Korte, B., W. Krelle und W. Oberhofer: Ein lexikographischer Suchalgorithmus zur Lösung allgemeiner Programmierungsaufgaben -Nachtrag, Unternehmensforschung 14, 1970, 228–234.

    MATH  Google Scholar 

  53. Land, A.H., and A.G. Doig: An automatic method of solving discrete programming problems, Econometrica 28, 1960, 497–520.

    Article  MATH  MathSciNet  Google Scholar 

  54. von Lanzenauer, C. and R. Himes: A linear programming solution to the general sequencing problem, Canadian Operational Research 8, 1970, 129–134.

    Google Scholar 

  55. Lasdon, L.S.: Optimization theory for large systems, 1970.

    MATH  Google Scholar 

  56. Lawrie, N.L.: An integer linear programming model of a school timetabling problem, Computer Journal 12 (4), 1969, 307–316.

    Article  MathSciNet  Google Scholar 

  57. Lemke, C.E., and K. Spielberg: Direct search algorithms for zero-one and mixed-integer programming, Operations Research 15, 1967, 892–914.

    Article  MATH  MathSciNet  Google Scholar 

  58. Lemke, C.E., H.M. Salkin, and K. Spielberg: Set covering by single branch enumeration with linear programming subproblems, Operations Research 19, 1971, 998–1022.

    Article  MATH  MathSciNet  Google Scholar 

  59. Ligen, R.S.: The application of an implicit enumeration algorithm to the school desegregation problem, Management Science 20, 1973, 159–168.

    Article  Google Scholar 

  60. Mathematical Programming System Extended (MPSX), Mixed Integer Programming (MIP), Program Number 5734-XM4 (IBM World Trade Corporation New York 1971).

    Google Scholar 

  61. Mitra, G.: Investigation of some branch and bound strategies for the solution of mixed integer linear programs, Mathematical Programming 4, 1973, 155–170.

    Article  MATH  MathSciNet  Google Scholar 

  62. Nemhauser, G.L., and R. Garfinkel: Integer programming, 1972.

    MATH  Google Scholar 

  63. Petersen, C.C.: Computational experience with variants of the Balas algorithm applied to the selection of R & D project, Management Science 13, 1967, 736–750.

    Article  Google Scholar 

  64. Pierce, J.F.: Application of combinatorial programming to a class of all-zero-one integer programming problems, Management Science 15 (3), 1968, 191–209.

    Article  MathSciNet  Google Scholar 

  65. Pierce, J.F., and J. Lasky.: Improved combinatorial programming algorithms for a class of all zero-one integer programming problems, Management Science 19 (5), 1973, 528–543.

    Article  MATH  MathSciNet  Google Scholar 

  66. Ross, G.T., and R.M. Solana: A branch and bound algorithm for the generalized assignment problem, Mathematical Programming 8, 1975, 91–103.

    Article  MATH  MathSciNet  Google Scholar 

  67. Roy, B., R. Benayoun, and J. Tergny: From S.E.P. procedure to the mixed ophelie program, in Integer and Nonlinear Programming, (J. Abadie, Ed.), 1970.

    Google Scholar 

  68. Salkin, H.M.: On the merit of the generalized origin and restarts in implicit enumeration, Operations Research 18, 1970, 549–555.

    Article  MATH  Google Scholar 

  69. Salkin, H.M.: Integer Programming, 1975.

    MATH  Google Scholar 

  70. Salkin, H.M., and W.L. Balinski: Integer programming models and codes in the urban environment, Socio-Econ. Plan. Science 7, 1973, 739–753.

    Google Scholar 

  71. Suhl, U.: Entwicklung von Algorithmen für ganzzahlige Optimierungsmodelle, Dissertation an der Freien Universität Berlin 1975.

    Google Scholar 

  72. Thangavelu, S.R., and CM. Shetty: Assembly line balancing by 0–1 integer programming, AIIE Trans. III, 1971, 61–68.

    Article  Google Scholar 

  73. Tomlin, J.A.: An improved branch and bound method for integer programming, Operations Research 19 (4), 1973, 1070–1075.

    Article  MathSciNet  Google Scholar 

  74. Tomlin, J.A.: Branch and bound methods for integer and non-convex programming, in Integer and Nonlinear Programming, (J. Abadie, Ed.), 1970.

    Google Scholar 

  75. Williams, H.P.: Experiments in the formulation of integer programming problems, in Approaches to Integer Programming, (M.L. Balinski, Ed.), 1974.

    Google Scholar 

Download references

Authors

Editor information

Hartmut Noltemeier

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mevert, P., Suhl, U. (1976). Lösung gemischt-ganzzahliger Planungsprobleme. In: Noltemeier, H. (eds) Computergestützte Planungssysteme. Physica, Heidelberg. https://doi.org/10.1007/978-3-662-41562-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41562-7_6

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-0170-5

  • Online ISBN: 978-3-662-41562-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics