Skip to main content

On the mechanism of elevation of cardiac muscle functional capabilities in adaptation to exercise

Zum Mechanismus der Verbesserung der Leistungsfähigkeit des Herzens durch körperliches Training

  • Chapter
Experimental Cardiac Hypertrophy and Heart Failure

Summary

The main parameters of contraction and relaxation of papillary muscle strips taken from the left ventricle of control and exercise-adapted rats were measured. The isotonic peak shortening velocity and contraction amplitude of thin strips under low loads in adapted animals were 1.5 times higher compared to the corresponding controls.

In thick strips an even greater difference in parameters of isotonic contraction was observed — 2.3 times more. This change, together with 1.5 times higher maximal load corresponding to maximal developed tension, suggested the increased resistance to hypoxia in myocardial cells during adaptation. These results have been interpreted as being due to the well-known increase in the myosin ATP-ase activity as well as the adaptive augmentation of the functional power of oxygen and substrates transport system in myocardial cells.

The relaxation velocity of the adapted cardiac muscle increased even more than the contractile parameters; the relaxation index was higher as compared to the controls. It was suggested that the adaptation caused an augmentation in the calcium pump functional power. The myocardial compliance and the positive inotropic response to high frequency of stimulation were also elevated in adapted cardiac muscle. In total, the results suggest that an elevation of maximal myocardial performance caused by the exercise adaptation may be due to a coordinative augmentation of the functional power of the three main systems of myocardial cells — the ionic transport system, myosin ATPase and the ATP resynthesis system.

Dr. Pfeiffer worked in Moscow during a Scientific Mission from Physiology Institute, Berlin, German Democratic Republic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrand, P. O., T. Cuddy, B. Saltin, J. Stenberg: Cardiac output during submaxi mal and maximal work. J. Appl. Physiol. 19, 268–274 (1964).

    PubMed  CAS  Google Scholar 

  2. Komadel, L., E. Barta, M. Kokavetz: Physiological augmentation of the heart (Bratislava) 1968

    Google Scholar 

  3. Penpargkul, S., J. Scheuer: The effect of physical training upon the mechanical and metabolic performance of the rat heart. J. Clin. Invest. 49, 1859–1868 (1970).

    Article  PubMed  CAS  Google Scholar 

  4. Bersohn, M. M., J. Scheuer: Effects of physical training on end-diastolic volume and myocardial performance of isolated rat hearts. Circulat. Res. 40, 510–516 (1977).

    Article  PubMed  CAS  Google Scholar 

  5. Meerson, F. Z., V. I. Kapelko, S. I. Shaginova: Contractile function of the myocardium in adaptation to physical load (Russ.) Cardiologia (Mos.) 13, 5–18 (1973).

    Google Scholar 

  6. Amsterdam, E. A., J. Wickmann-Coffelt, G. Choquet, T. Kamiyama, J. Lenz, R. Zelis, D. T. Mason: Response of the rat heart to strenuous exercise: physical, biochemical and functional correlates (abstr.). Clin. Res. 20, 361 (1972)

    Google Scholar 

  7. Krames, B., D. W. Northup: Isometric tension development in the hypertrophied heart. Fed. Proc. 23, 359 (1964).

    Google Scholar 

  8. Meerson, F. Z., L. S. Rozanova: Force and velocity of myocardial contraction in cardiac hypertrophy produced by experimental lesion and training. (Rus.) Pat. Fiziol. Exp. Ther. (Mos.). 11, 18–22 (1967).

    CAS  Google Scholar 

  9. Codini, M. A., T. Lipintsoi, J. Scheuer: Cardiac responses to moderate training in rats. J. Appl. Physiol. Respirat. Environ. Exercise Physiol. 42, 262–266 (1977).

    CAS  Google Scholar 

  10. Steil, E., M. Hansis, A. Hepp, I. Kissling, R. Jacob: Cardiac hypertrophy due to physical exercise — an example of hypertrophy without decrease of contractility: unreliability of conventional estimation of contractility by simple parameters. In: Recent Advances in Studies on Cardiac Structure and Metabolism (ed. A. Fleckenstein, N. S. Dhalla) University Park, 5, 491–496 (1975).

    Google Scholar 

  11. Meerson, F. Z., V. I. Kapelko: Role of the connection between the force of contraction and the velocity of relaxation of the myocardium in the adaptation of the heart to increasing loads. (Rus.) Cardiologia (Mos.). 13, 19–30 (1973).

    CAS  Google Scholar 

  12. Meerson, F. Z., V. I. Kapelko: Contraction and relaxation of the myocardium in compensatory hypertrophy and the state of physical training. Proceed. Second USSR-USA symposium on Myocardial Metabolism, Sochi, 249–271 (1975).

    Google Scholar 

  13. Meerson, F. Z., V. I. Kapelko: The significance of the interrelationship between the intensity of the contractile state and the velocity of relaxation in adapting cardiac muscle to function at high work loads. J. Mol. Cell. Cardiol. 7, 793–806 (1975).

    Article  PubMed  CAS  Google Scholar 

  14. Henderson, A. H., R. J. Craig, R. Gorlin, E. H. Sonnenblick: Free fatty acids and myocardial function in perfused rat hearts. Cardiov. Res. 4, 466–472 (1970)

    Article  CAS  Google Scholar 

  15. Meerson, F. Z., V. I. Kapelko: The contractile function of the myocardium in two types of heart adaptation to increased load. Cardiology. 57, 183–199 (1972).

    Article  PubMed  CAS  Google Scholar 

  16. Troshanova, E. S.: Effect of experimental training on biochemical indices of cardiac muscle (Rus.). BuU. Exp. Biol. Med. 32, 287–293 (1951).

    Google Scholar 

  17. Tepperman, J., D. Pearlman: Effects of exercise and anemia in coronary arteries of small animals as revealed by the corrosion-cast technique. Circulat. Res. 9, 576–584 (1961).

    Article  PubMed  CAS  Google Scholar 

  18. Stevenson, J. A. F., V. Fekeli, P. Rechnitzer, J. R. Beaton: Effect of exercise on coronary tree size in the rat. Circulat. Res. 15, 265–269 (1964).

    Article  PubMed  CAS  Google Scholar 

  19. Walpurger, G., H. Anger: Die enzymatische Organisation des Energiestoffwech sels im Rattenherzen nach Schwimm-und Lauftraining. Z. Kreislaufforschg. 59, 438–449 (1970).

    CAS  Google Scholar 

  20. Coleman, H. N.: Effect of alterations in shortening and external work on oxygen consumption of cat papillary muscle. Amer. J. Physiol. 214, 100–106 (1968).

    PubMed  CAS  Google Scholar 

  21. Wilkerson, J. E., E. Evonuk: Changes in cardiac and skeletal muscle myosin ATP-ase activities after exercise. J. Appl. Physiol. 30, 328–330 (1971).

    PubMed  CAS  Google Scholar 

  22. Bhan, A. K., J. Scheuer: Effects of physical training on cardiac actomyosin adenosine triphosphatase activity. Amer. J. Physiol. 223, 1486–1490 (1972).

    PubMed  CAS  Google Scholar 

  23. Barany, M.: ATP-ase activity of myosin correlated with speed of muscle shor tening. J. gen. Physiol. 50, 197–216 (1967).

    Article  PubMed  Google Scholar 

  24. Katz, A. M; Relationships between mechanical and chemical phenomena in the myocardium. In: Cardiac hypertrophy, ed. N. Alpert, Acad. Press 85–88 (1971).

    Google Scholar 

  25. Sonnenblick, E. H., W. W. Parmley, R. S. Buccino, J. F. Spann: Maximum force development in cardiac muscle. Nature (Engl.). 219, 1056–1058 (1968).

    Article  CAS  Google Scholar 

  26. Yazaki, Y., M. S. Raben: Effect of thyroid state on the enzymatic characteristics of cardiac myosin. A difference in behaviour of rat and rabbit cardiac myosin. Circulat. Res. 36, 208–215 (1975).

    CAS  Google Scholar 

  27. Strauer, B. E., W. Schulze: Experimental hypothyroidism: depression of myocardial contractile function and hemodynamics and their reversibility by substitution with thyroid hormones. Basic Res. Cardiol. 71, 624–644 (1976).

    Article  PubMed  CAS  Google Scholar 

  28. Skelton, C. L., J. Y. Su, P. E. Pool: Influence of hyperthyroidism on glycerolextracted cardiac muscle from rabbits. Cardiov. Res. 10, 380–384 (1976).

    Article  CAS  Google Scholar 

  29. Kämmereit, A., I. Medugorac, E. Steil, R. Jacob: Mechanics of the isolated ventricular myocardium of rats conditioned by physical training. Basic Res. Cardiol. 70, 495–507 (1975).

    Article  PubMed  Google Scholar 

  30. Mole, P. A.: Increased contractile potential of papillary muscles from exercise-trained rat hearts. Amer. J. Physiol.: Heart a Circui. Physiol. 3, H 421–H 425 (1978).

    Google Scholar 

  31. Carew, T. E., J. W. Covell: Left ventricular function in exercise-induced hypertrophy in dogs. Amer. J. Cardiol. 42, 82–88 (1978).

    Article  PubMed  CAS  Google Scholar 

  32. Penpargkul, S., D. I. Repke, A. M. Katz, J. Scheuer: Effect of physical training on calcium transport by rat cardiac sarcoplasmic reticulum. Circui. Res. 40, 134–138 (1977).

    Article  CAS  Google Scholar 

  33. Meerson, F. Z., V. I. Kapelko, A. A. Nourmatov: Physiological evaluation of the capacity of the diastole mechanism. Acta cardiol. 26, 547–567 (1971).

    PubMed  CAS  Google Scholar 

  34. Sordahl, L. A., W. B. McCollum, W. G. Wood, A. Schwartz: Mitochondria and sarcoplasmic reticulum function in cardiac hypertrophy and failure. Amer. J. Physiol. 224, 497–502 (1973).

    PubMed  CAS  Google Scholar 

  35. Kapelko, V. I., L. M. Giber: Response of the heart to functional load in control and trained rats. (Rus.) Sechenov’s Physiol. J. USSR. 63, 597–599 (1977).

    CAS  Google Scholar 

  36. Henderson, A. H., D. L. Brutsaert, W. W. Parmley, E. H Sonnenblick: Myocardial mechanics in papillary muscles of the rat and cat. Amer. J. Physiol. 217, 1273–1279 (1969).

    PubMed  CAS  Google Scholar 

  37. Kapelko, V. L: Effect of thickness of isolated papillary muscles on strength of contraction at different frequencies (Rus.) Bull. Exp. Biol. Med. 70, 1352–1354 (1970).

    Google Scholar 

  38. Forester, G. V., G. W. Mainwood: Interval dependent inotropic effects in the rat myocardium and the effect of calcium. Pflüg. Arch. 352, 189–196 (1974).

    CAS  Google Scholar 

  39. Henry, P. D.: Positive staircase effect in the rat heart. Amer. J. Physiol. 228, 360–364 (1975).

    PubMed  CAS  Google Scholar 

  40. Lehninger, A. L.: Mitochondria and calcium ion transport. Biochem. J. 119, 129–139 (1970).

    PubMed  CAS  Google Scholar 

  41. Meerson, F. Z., L. Golubeva: Effect of preliminary adaptation to basic factors of environment on the ATP concentration and the phosphorylation potential in the myocardium at acute overload of the heart. (Rus.) Doklady Acad. Sci. USSR. 210, 989–992 (1973).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meerson, F.Z., Kapelko, V.I., Pfeiffer, C. (1980). On the mechanism of elevation of cardiac muscle functional capabilities in adaptation to exercise. In: Jacob, R. (eds) Experimental Cardiac Hypertrophy and Heart Failure. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-41468-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41468-2_32

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-0577-3

  • Online ISBN: 978-3-662-41468-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics