Skip to main content

Abstract

When polymer melts flow through narrow channel or small-orifice dies, highly unsteady or irregular flow have sometimes been observed even when the imposed boundary conditions are steady and uniform (Pearson, 1969).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

b :

rheological parameter of the fluid defined by eq.[4]

B :

dimensionless viscosity-temperature parameter defined by eq. [11]

C :

rheological parameter defined by eq. [4]

h :

distance between the two parallel plates, ft.

H :

a thermal transfer coefficient (1/h)

l :

length of the plates, ft.

p :

pressure

P :

inlet pressure

Gz :

Graetz number defined by eq. [11]

t :

time, h

T :

mean temperature as defined by eq. [2]

T 1 :

inlet temperature

u :

velocity vector with u x, u y, u z as component velocities

v :

mean velocity vector as defined by eq. [1]

V :

mean steady state axial velocity

x y, z :

Cartesian coordinate system

w :

refers to wall condition

α:

thermal diffusivity, ft2/h

A:

effective thermal diffusivity tensor

ξ:

dimensionless x coordinate

λ:

wave number in y direction

Λ :

dimensionless wave number in y direction

μ0 :

viscosity of fluid

ϱ:

density of fluid

Ψ:

dimensionless velocity in x direction

ω:

growth rate of disturbances

Ω:

dimensionless growth rate

\(\mathop K\limits^ - \) :

proportionality constant for heat generation in eq.[5]

References

  • Pearson, J. R. A., Plastics and Polymers 37, 285 (1969).

    Google Scholar 

  • Pearson, J. R. A. and Y. T. Shah, Stability of Non-Isothermal Flow in Channels (Paper aceepted by Chem. Eng. Sci.).-Pearson, J.R. A., Mechanical Principles of Polymer Melt Processing, p. 60 (Oxford, England, 1966).

    Google Scholar 

  • Martin, B., Intl. J. Non-Linear Mech. 2, 285 (1967).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pearson, J.R.A., Shah, Y.T. (1975). On the stability of non-isothermal flow in channels. In: Vallet, G., Meskat, W. (eds) Rheological Theories · Measuring Techniques in Rheology Test Methods in Rheology · Fractures Rheological Properties of Materials · Rheo-Optics · Biorheology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-41458-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41458-3_28

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-0424-0

  • Online ISBN: 978-3-662-41458-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics