Skip to main content

Accumulation of Somatic Mutation in Mitochondrial DNA and Atherosclerosis in Diabetic Patients

  • Chapter
  • 251 Accesses

Part of the book series: Annals of the New York Academy of Sciences ((ANYAS,volume 1011))

Abstract

A point mutation of mitochondrial DNA at nucleotide position 3243 A to G is responsible for the genetic cause of diabetes. Otherwise, this mu-tation is also reported to occur as a somatic mutation, possibility because of oxidative stress. Because diabetes may cause oxidative stress, we hypothesized that accumulation of the somatic A3243G mutation in mitochondrial DNA may be accelerated by diabetes. DNA was extracted from blood samples of 290 non-diabetic healthy subjects (aged 0–60 years) and from 383 type 2 diabetic patients (aged 18–80 years). Then, the extent of somatic A3243G mutation in total mitochondrial DNA was detected by real-time polymerase chain reaction (PCR) using the ThqMan probe. The genotyping of ACE I/D or p22phox C242T was done by PCR or PCR-restriction fragment length polymorphism. Although the level of the A3243G mutation was negligible in the newborn group, it increased in healthy subjects aged 20–29 and 41–60 years. In diabetic patients, the mutational rate increased along with age and the duration of diabetes. In the middle-aged group (41–60 years old), the A3243G mutation accumulates fourfold higher in the diabetic patients than in the healthy subjects. Moreover, multiple regression analysis revealed that the most critical factor associated with this mutation in diabetic patients was the duration of diabetes. Furthermore, the genotype of DD, DI-CC (ACE-p22phox) has the highest mutational rate and the thickest intima-media thickness of the carotid artery. In conclusion, diabetes accelerates the accumulation of the somatic A3243G mutation in mitochondrial DNA, and this somatic mutation may be a marker for the duration of diabetes and atherosclerosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van den Ouweland, J.M.W. 1992. Mutations in mitochondrial tRNALeu(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat. Genet. 1: 368–371.

    Article  PubMed  Google Scholar 

  2. Kadowaki, T. 1994. A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N. Engl. J. Med. 330: 962–968.

    Article  CAS  PubMed  Google Scholar 

  3. Kobayashi, Y. 1990. A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem. Biophys. Res. Commun. 173: 816–822.

    Article  CAS  PubMed  Google Scholar 

  4. Munscher, C. 1993. Human aging is associated with various point mutations in tRNA gene of mitochondrial DNA. Biol. Chem. Hoppe-Seyler 374: 1099–1104.

    Article  CAS  PubMed  Google Scholar 

  5. Corral-Debrinski, M. 1992. Mitochondrial DNA deletion in human brain: regional variability and increase with advanced age. Nat. Genet. 2: 324–329.

    Article  CAS  PubMed  Google Scholar 

  6. Ozawa, T. 1995. Mechanism of somatic mitochondrial DNA mutations associated with age and diseases. Biochem. Biophys. Acta 1271: 177–189.

    Article  PubMed  Google Scholar 

  7. Kadenbach, B. 1995. Human aging is associated with stochastic somatic mutations of mitochondrial DNA. Mutat. Res. 338: 161–172.

    Article  CAS  PubMed  Google Scholar 

  8. Dandona, P. 1993. Oxidative damage to DNA in diabetes mellitus. Lancet 347: 444–445.

    Article  Google Scholar 

  9. Hinokio, Y. 1999. Oxidative damage in diabetes mellitus: its association with diabetic complications. Diabetologia 42: 995–998.

    Article  CAS  PubMed  Google Scholar 

  10. Kawamori, R. 1995. Asymptomatic hyperglycemia and early atherosclerotic changes. Diabetes Res. Clin. Pract. 40 (Suppl.): S35–S42.

    Article  Google Scholar 

  11. Nishikawa, T. 2000. Normalizing mitochondrial Superoxide production blocks three pathways of hyperglycemic damage. Nature 404: 787–790.

    Article  CAS  PubMed  Google Scholar 

  12. Cambien, F. 1992. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 359: 641–644.

    Article  CAS  PubMed  Google Scholar 

  13. Viedt, C. 2000. Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of P22phox and reactive oxygen species. Arterioscler. Thromb. Vasc. Biol. 20: 948–949.

    Google Scholar 

  14. Hayashi, J. 1994. Nuclear but not mitochondrial genome involvement in human age-related mitochondrial dysfunction. Functional integrity of mitochondrial DNA from aged subjects. J. Biol. Chem. 269: 6878–6883.

    CAS  PubMed  Google Scholar 

  15. Inoue, N. 1998. Polymorphism of the NADH/NADPH oxidase p22phox gene in patients with coronary artery disease. Circulation 97: 135–137.

    Article  CAS  PubMed  Google Scholar 

  16. Kogawa, K. 1997. Effect of polymorphism of apoplipoprotein E and angiotensis-converting enzyme genes on arterial wall thickness. Diabetes 46: 682–687.

    Article  CAS  PubMed  Google Scholar 

  17. Liang, P. 1997. Increased prevalence of mitochondrial DNA deletions in skeletal muscle of older individuals with impaired glucose tolerance: possible marker of glycemie stress. Diabetes 46: 920–923.

    Article  CAS  PubMed  Google Scholar 

  18. Fukagawa, N.K. 1999. Aging and high concentrations of glucose potentiate injury to mitochondrial DNA. Free Radie. Biol. Med. 27: 1437–1443.

    Article  CAS  Google Scholar 

  19. Suzuki, S. 1999. Oxidative damage to mitochondrial DNA and its relationship to diabetic complications. Diabetes Res. Clin. Pract. 45: 161–168.

    Article  CAS  PubMed  Google Scholar 

  20. Nomyama, T. 2002. Accumulation of somatic mutation in mitochondrial DNA extracted from peripheral blood cells in diabetic patients. Diabetologia 45: 1577–1583.

    Article  Google Scholar 

  21. Piao, L.S. 2002. Combined genotypes of ACE and NADPH oxidase p22phox associated with somatic mutation of mtDNA and carotid intima-media thickness in Japanese patients with type 2 diabetes mellitus. Curr. Ther. Res. 12: 842–852.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hong Kyu Lee Salvatore DiMauro Masashi Tanaka Yau-Huei Wei

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nomiyama, T. et al. (2004). Accumulation of Somatic Mutation in Mitochondrial DNA and Atherosclerosis in Diabetic Patients. In: Lee, H.K., DiMauro, S., Tanaka, M., Wei, YH. (eds) Mitochondrial Pathogenesis. Annals of the New York Academy of Sciences, vol 1011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-41088-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41088-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-1-57331-491-6

  • Online ISBN: 978-3-662-41088-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics