Tidal Friction in the Solid Earth: Loading Tides Versus Body Tides

  • J. Zschau

Abstract

Astronomical as well as palaeontological evidence suggests a secular retardation of the Earth’s rotation, which is attributed to tidal friction, i. e., mainly to the nonequilibrium and imperfectly fluid response of the Earth’s oceans, as well as to the imperfectly elastic response of the solid Earth to tidal forces. Estimates of the rotational energy dissipated in the oceans show that the oceanic term probably accounts for most of the dissipated energy (Pekeris and Accad, 1969; Pariiskii et al., 1972; Kuznetsov, 1972; Brosche and Sündermann, 1972; Hender-shott, 1972), although the exact share between both, the oceanic dissipation and the dissipation within the solid Earth, is not known. This is attributed to insufficiencies in the knowledge of the marine tides in the open oceans, and to the fact that nothing is known about the rheological mechanism of tidal dissipation within the solid Earth. Measurements of tidal gravity variations at the Earth’s surface, as well as precise observations of the tidal effect on satellite orbits have not yet revealed reliable results on imperfectly elastic body tides of the Earth. Model calculations give also only rough estimations of the tidal energy dissipated within the Earth, mainly because no information is available on the specific tidal dissipation function, i. e., the quality factor Q within the Earth.

Keywords

Total Heat Europe Torque Attenuation Subduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alterman, Z., Jarosch, H., Pekeris, T.L.: Propagation of Raleigh Waves in the Earth, Geophys. J. 4, 219 (1961)CrossRefGoogle Scholar
  2. Anderson, D.L.: The anelasticity of the mantle. Geophys. J.R. Astron. Soc. 14, 135 (1967)CrossRefGoogle Scholar
  3. Anderson, D.L., Ben-Menahem, A., Archambeau, C.B.: Attenuation of seismic energy in the upper mantle. J. Geophys. Res. 70, 1441 (1965)CrossRefGoogle Scholar
  4. Biot, M.A.: Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. J. Appl. Phys. 25(11), 1385 (1954)CrossRefGoogle Scholar
  5. Biot, M.A.: Dynamics of viscoelastic anisotropic media. In: Proceedings of the Second Midwestern Conference on Solid Mechanics. Res. Ser. Engeneering Experiment Station, Purdue University, Lafayette, Ind.: 1955, Vol. 129Google Scholar
  6. Brosche, P., Sündermann, J.: On the torques due to tidal friction of the oceans and adjacent seas. In: Rotation of the Earth. Melchior, P., Yumi, S. (eds.). Dordrecht, Netherlands: D. Reidel, 1972, pp. 235–239Google Scholar
  7. Chapman, D.S., Pollack, H.N.: Global heat flow: A new look. Earth Planet. Sci. Lett. 28, 23 (1975)CrossRefGoogle Scholar
  8. Farrell, W.E.: Deformation of the Earth by surface loads. Rev. Geophys. Space Phys. 10, 761 (1972)CrossRefGoogle Scholar
  9. Gordon, R.B., Davis, L.A.: Velocity and attenuation of seismic waves in imperfectly elastic rock. J. Geophys. Res. 73, 3917 (1968)CrossRefGoogle Scholar
  10. Groten, E., Brennecke, J.: Global interaction between Earth and Sea Tides. J. Geophys. Res. 78, 8519 (1973)CrossRefGoogle Scholar
  11. Harkrider, D.G.: Surface waves in multilayered elastic media, 2, Higher mode spectra and spectral ratios from point sources in plane layered Earth models, Bull. Seismol. Soc. Am. 60, 1937 (1970)Google Scholar
  12. Harrison, J.C., Ness, N.F., Longman, J.M., Forbes, R.F.S., Kraut, E.A., Slichter, L.B.: Earth-Tide observations made during the International Geophysical Year. J. Geophys. Res. 68, 1497 (1963)CrossRefGoogle Scholar
  13. Hendershott, M.C.: The effects of solid Earth deformation on global ocean tides. Geophys. J.R. Astron. Soc. 29, 389 (1972)CrossRefGoogle Scholar
  14. Kaula, W.M.: Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. Space Phys. 2, 661 (1964)CrossRefGoogle Scholar
  15. Kuznetsov, M.V.: Calculation of the secular retardation of the Earth’s rotation from up-to-date cotidal charts. Izv. Acad. Sci. USSR Phys. Solid Earth 12, 779 (1972)Google Scholar
  16. Lagus, P.L., Anderson, D.L.: Tidal dissipation in the Earth and planets. Phys. Earth Planet. Interiors 1, 505 (1968)CrossRefGoogle Scholar
  17. Lamb, H.: Hydrodynamics. New York: Dover Publications Ltd., 1945Google Scholar
  18. Lambeck, K., Cazenave, A., Balmino, G.: Solid Earth and ocean tides estimated from satellite orbit analyses. Rev. Geophys. Space Phys. 12, 421 (1974)CrossRefGoogle Scholar
  19. Lee, E.H.: Stress analysis in visco-elastic bodies. Appl. Math. 13, 183 (1955)Google Scholar
  20. Longman, J.M.: A Green’s function for determining the deformation of the Earth under surface mass loads, 1, Theory. J. Geophys. Res. 61, 845 (1962)CrossRefGoogle Scholar
  21. Longman, J.M.: A Green’s function for determining the deformation of the Earth under surface mass loads, 2, Computations and numerical results. J. Geophys. Res. 68, 485 (1963)CrossRefGoogle Scholar
  22. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. New York: Dover Publications Ltd., 1927Google Scholar
  23. MacDonald, G.J.F.: Tidal friction. Rev. Geophys. Space Phys. 2, 467 (1964)CrossRefGoogle Scholar
  24. Melchior, P., Kuo, J.T., Ducarme, B.: Earth tide gravity maps for Western Europe. Phys. Earth Planet. Interior 13, 184 (1976)CrossRefGoogle Scholar
  25. Morrison, L.V.: Tidal deceleration of the Earth’s rotation deduced from astronomical observations in the period AD 1600 to the present, paper presented at the International Symposium on “Tidal Friction and Earth’s Rotation”, held at Bielefeld in Sept. 1977Google Scholar
  26. Munk, W.H., MacDonald, G.J.F.: The Rotation of the Earth. New York: Cambridge University Press, 1960Google Scholar
  27. Munk, W.H.: Once again, tidal friction. Q. J. R. Astron. Soc. 9, 352 (1968)Google Scholar
  28. Pariiskii, N.N.: The Influence of Earth tides on the secular retardation of the Earth’s rotation. Astron. J. 37, No.3, 543 (1960)Google Scholar
  29. Pariiskii, N.N., Kuznetsov, M.V., Kuznetsova, L.V.: The effect of oceanic tides on the secular deceleration of the Earth’s rotation. Izv. Acad. Sci. USSR Phys. Solid Earth 2, 65 (1972)Google Scholar
  30. Pekeris, C.L., Accad, Y.: Solution of Laplace’s equations for the M2 tide in the world oceans. Phil. Trans. R. Soc. London, Ser. A 265, 413 (1969)CrossRefGoogle Scholar
  31. Pekeris, C.L., Jarosch, H.: The free oscillations of the Earth. In: Contributions in Geophysics in Honor of Beno Gutenberg. Benioff, H., Ewing, M., Howell, B., Press, F. (eds.). New York: Pergamon Press, 1958, Vol. 1, p. 171Google Scholar
  32. Quamar, A., Eisenberg, A.: The damping of core waves. J. Geophys. Res. 79, 785 (1974)CrossRefGoogle Scholar
  33. Slichter, L.B., MacDonald, G.J.F., Caputo, M., Hager, C.L.: Comparison of spectra for spheroidal modes excited by the Chilean and Alaskan quakes. Geophys. J.R. Astron. Soc. 11, 256 (1966)Google Scholar
  34. Slichter, L.B., Melchior, P.: Compte Rendu des Réunions de la Commission Permanente des marées terrestres à l’Assemblée Générale d’Helsinki. Marées Terr. Bull. Inf. 21, 369 (1960)Google Scholar
  35. Smith, J.C., Born, G.H.: Secular acceleration of Phobos and Q of Mars. Icarus 27, 51 (1976)CrossRefGoogle Scholar
  36. Smith, S.W.: The anelasticity of the mantle. In: The Upper Mantle. Ritsema, A.R. (ed.). Tectonophysics 13, 601 (1972)Google Scholar
  37. Stacey, F.D.: Physics of the Earth. 2nd Ed. John Wiley and Sons, 1977Google Scholar
  38. Vetter, U.R.: Stresses and viscosities in the asthenosphere. J. Geophys. 44, 3 (1978)Google Scholar
  39. Vetter, U.R., Meissner, R.O.: Creep in geodynamic processes. Tectonophysics 42, 37 (1977)CrossRefGoogle Scholar
  40. Weertman, J.: The creep strength of the Earth’s mantle. Rev. Geophys. Space Phys. 8, 145 (1970)CrossRefGoogle Scholar
  41. Zschau, J.: Phase shifts of tidal see load deformations of the Earth’s surface due to low viscosity layers in the interior, Proceed 8th Intern. Symp. Earth Tides, held at Bonn 1977, 1978a, in pressGoogle Scholar
  42. Zschau, J.: The influence of the Earth’s viscosity on deformations by marine tidal surface loads, Proceed. Intern. Meeting on “Earth Rheology and Late Cenozoic Isostatic Movements”, held at Stockholm 1977, 1978b, in pressGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • J. Zschau
    • 1
  1. 1.Institute of GeophysicsKiel-UniversityKielGermany

Personalised recommendations