The Kinetics of the Uptake and Elimination of Halothane and Enflurane

  • H. Schmidt
  • R. Dudziak
Part of the Anaesthesiology and Intensive Care Medicine / Anaesthesiologie und Intensivmedizin book series (A+I)

Abstract

The general presentation of the pharmacokinetics of halothane and enflurane, using numerous mathematical models [2, 6, 9, 12, 13, 24, 25, 30, 34], like the corresponding clinical experimental investigations is based upon measurements of the inspiratory and/or end-expiratory concentration of the anaesthetic in question [8, 14, 23, 29, 31, 33], and upon determinations of the solubility of the individual inhalation anaesthetics in the various body fluids and tissues [18, 21, 22, 32]. On the other hand, measurements of the halothane or enflurane concentration in the arterial or venous blood of humans are used almost exclusively for the determination of partial pharmacokinetic or pharmacodynamic aspects [1, 3, 7, 10, 11, 16, 17, 19, 20, 26]. Only the serum half-lives calculated for halothane by Duncan and Raventos [11], which fluctuate between 3 and 45 min, are based upon nephelometric determinations of the halothane level in the venous blood.

Keywords

Catheter Bromide Respiration Charcoal Fentanyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardoin D, Hingson RA, Tomaro AJ, Fike WW (1966) Chromatographic blood-gas studies of halothane in ambulatory oral surgical anesthesia. Anesth Analg 45:275–281.PubMedGoogle Scholar
  2. 2.
    Ashman MN, Blesser WB, Epstein RM (1970) A nonlinear model for the uptake and distribution of halothane in man. Anesthesiology 33:419–429.PubMedCrossRefGoogle Scholar
  3. 3.
    Bencsath FA, Drysch K, List D, Weichardt H (1978) Analysis of volatile air pollutants by charcoal adsorption with subsequent gas Chromatographic head space analysis by desorption with benzylalcohol. Angewandte Chromatographie No. 32 E, Bodenseewerk. Perkin-Elmer & Co, Überlingen.Google Scholar
  4. 4.
    Beneken Kolmer HH, Burm AG, Cramers CA, Ramakers JM, Vader HL (1975) The uptake and elimination of halothane in dogs: a two or multicompartment-system? I: Gaschromatographic determination of halothane in blood and in inspiratory and end-tidal gases. Br J Anaesth 47:1049–1052.CrossRefGoogle Scholar
  5. 5.
    Beneken Kolmer HH, Burm AG, Cramers CA, Ramakers JM, Vader HL (1975) The uptake and elimination of halothane in dogs: a two or multicompartment-system? II: Evaluation of wash-in and wash-out curves. Br J Anaesth 47:1169–1175.CrossRefGoogle Scholar
  6. 6.
    Bourne JG (1964) Uptake, elimination and potency of inhalational anaesthetics. Anaesthesia 19:12–32.PubMedCrossRefGoogle Scholar
  7. 7.
    Butler RA (1963) Halothane. In: Papper EM, Kitz RJ (eds) Uptake and distribution of anesthetic agents. McGraw-Hill, New York Toronto London, pp 274–283.Google Scholar
  8. 8.
    Chase RE, Holaday DA, Fiserova-Bergerova V, Saidman LJ (1971) The biotransformation of Ethane in man. Anesthesiology 35:262–267.PubMedCrossRefGoogle Scholar
  9. 9.
    Cowles AL, Borgstedt HH, Gillies AJ (1968) Uptake and distribution of inhalation anesthetic agents in clinical practice. Curr Res Anesth Analg 47:404–414.Google Scholar
  10. 10.
    Dick W, Knoche E, Traub E, Eckstein K-L (1975) Ethrane in der Geburtshilfe. In: Kreuscher H (ed) Ethrane, neue Ergebnisse aus Forschung und Klinik. Schattauer, Stuttgart New York, pp 73–85.Google Scholar
  11. 11.
    Duncan WAM, Raventos J (1959) The pharmaeokinetics of halothane (Fluothane) anaesthesia. Br J Anaesth 31:302–315.PubMedCrossRefGoogle Scholar
  12. 12.
    Eger EI II (1963) Applications of a mathematical model of gas uptake. In: Papper EM, Kitz RJ (eds) Uptake and distribution of anesthetic agents. McGraw-Hill, New York Toronto London, pp 88–103.Google Scholar
  13. 13.
    Eger EI II (1976) Anesthetic uptake and action. William & Wilkins, Baltimore.Google Scholar
  14. 14.
    Epstein RM, Rackow H, Salanitre E, Wolf GL (1964) Influence of the concentration effect on the uptake of anesthetic mixtures: The second gas effect. Anesthesiology 25:364–371.PubMedCrossRefGoogle Scholar
  15. 15.
    Goldman E, De Campo T, Aldrete JA (1979) Enflurane concentration: influence of semi-closed system (Abstr). Anesthesiology 51:23.CrossRefGoogle Scholar
  16. 16.
    Gostomzyk JG (1971) Bestimmung der Narkosegas-Konzentration im Blut mit der Dampfraum-Gaschromatographie. Anaesthesist 20:212–215.PubMedGoogle Scholar
  17. 17.
    Grothe B, Doenicke A, Hauck G, Lindström D, Bauer T, Kugler J (1976) Untersuchungen zur Metabolisierung von Halothan und Ethrane am Menschen mit und ohne Vorbehandlung von Phenobarbital. Anaesthesiol Wiederbeleb 99:31–41.Google Scholar
  18. 18.
    Han YH, Helrich MH (1966) Effect of temperature on solubility of halothane in human blood and brain tissue homogenate. Anesth Analg 45:775–780.PubMedGoogle Scholar
  19. 19.
    Hennes HH (1975) Ethrane in der Kinderanaesthesie. In: Kreuscher H (ed) Ethrane, neue Ergebnisse aus Forschung und Klinik. Schattauer, Stuttgart New York, pp 87–99.Google Scholar
  20. 20.
    Kessler G, Haferkorn D (1977) Vergleichende Untersuchungen über die postnarkotische Phase nach Kurznarkosen mit Halothan und Ethrane. Z Prakt Anaesth 12:269–274.Google Scholar
  21. 21.
    Larson CP Jr, Eger EI II, Severinghaus JW (1962) The solubility of halothane in blood and tissue homogenates. Anesthesiology 23:349–355.PubMedCrossRefGoogle Scholar
  22. 22.
    Lowe HJ, Hagler K (1969) Determination of volatile organic anesthetics in blood, gases, tissues and lipids: partition coefficients. In: Porter R (ed) Gas chromatography in biology and medicine. A Ciba Foundation symposium. Churchill, London, pp 86–112.Google Scholar
  23. 23.
    Mapleson WW (1962) Rate of uptake of halothane vapour in man. Br J Anaesth 34:11–18.PubMedCrossRefGoogle Scholar
  24. 24.
    Mapleson WW (1963) An electric analogue for uptake and exchange of inert gases and other agents. J Appl Physiol 18:197–204.PubMedGoogle Scholar
  25. 25.
    Mapleson WW (1972) Kinetics. In: Chenoweth MB (ed) Modern inhalation anesthetics. Springer, Berlin Heidelberg New York, pp 326–344.CrossRefGoogle Scholar
  26. 26.
    Miller MS, Gandolfi AJ (1979) A rapid, sensitive method for quantifying enflurane in whole blood. Anesthesiology 51:542–544.PubMedCrossRefGoogle Scholar
  27. 27.
    Saraiva RA, Willis BA, Steward A, Nunn JN, Mapleson WW (1977) Halothane solubility in human blood. Br J Anaesth 49:115–119.PubMedCrossRefGoogle Scholar
  28. 28.
    Schmidt H (1981) Das Verhalten der venösen Blutspiegel von Halothan und Enfluran unter den Bedingungen einer weitgehend standardisierten Narkose. Habilitationsschrift, Frankfurt/M.Google Scholar
  29. 29.
    Sechzer PH, Linde HW, Dripps RD (1962) Uptake of halothane by the human body. Anesthesiology 23:161–162.CrossRefGoogle Scholar
  30. 30.
    Smith NT, Zwart A, Beneken JEW (1972) Interaction between circulatory effects and the uptake and distribution of halothane: use of a multiple model. Anesthesiology 37:47–58.PubMedCrossRefGoogle Scholar
  31. 31.
    Stoelting RK, Eger EI II (1969) The effect of ventilation and anesthetic solubility on recovery from anesthesia. Anesthesiology 30:290–296.PubMedCrossRefGoogle Scholar
  32. 32.
    Stoelting RK, Longshore RK (1972) Effect of temperature on the solubility of fluoxene, halothane and methoxyflurane blood/gas and cerebrospinal fluid/gas partition coefficients. Anesthesiology 36:503–505.PubMedCrossRefGoogle Scholar
  33. 33.
    Torri G, Damia G, Fabiani ML, Frova G (1972) Uptake and elimination of enflurane in man. A comparative study between enflurane and halothane. Br J Anaesth 44:789–794.PubMedCrossRefGoogle Scholar
  34. 34.
    Zwart A, Smith NT, Beneken JEW (1972) Multiple model approach to uptake and distribution of halothane: use of analog computer. Comp Biol Med Res 5:228–238.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • H. Schmidt
  • R. Dudziak

There are no affiliations available

Personalised recommendations