Studies of the Mechanism of Phagocytosis

  • S. C. Silverstein
  • J. Michl
  • J. D. Loike

Abstract

A central problem in modern biology is how signals initiated at the cell’s surface alter cellular behavior. Mononuclear phagocytes are superb tools for studying this question. These cells have on their surfaces receptors for the Fc fragment of immunoglobulin G (IgG) and for the third component of complement (C3). Particles coated with these immunologically determined ligands bind via these ligands to macrophage membrane receptors. Signals generated by the interaction of particle bound ligands with their corresponding membrane receptors promote pseudopod extension and particle engulfment. As a phagocytic vacuole forms, the plasma membrane must rearrange its structure to form a sphere from a relatively flat sheet. When the advancing pseudopods meet to seal the phagocytic vacuole they fuse selectively with one another and not with membrane processes of adjacent cells. The speed and magnitude of the phagocytic process is also impressive. Within a span of 10–15 min these cells can engulf sufficient particles to cause interiorization of 30–50% of the macrophage surface area. How are these processes regulated? What coordinates membrane movement and remodelling? How are signals that are initiated at the cell’s surface transmitted to the cytoskeleton? We are trying to answer these questions by studying the phagocytosis of IgG or complement coated erythrocytes. Erythrocytes coated with these serum ligands are easy to prepare. By measuring whether these ligand coated erythrocytes bind to the macrophages we can identify the presence of receptors for IgG or for complement. By measuring whether the erythrocytes are ingested by the macrophages we can test for delivery of a transmembrane signal, i.e. the signal to phagocytose a particle.

Keywords

Lactate Leukemia Lysine Trypsin Calorimetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ash JF, Louvard D, Singer SJ (1977) Proc Natl Acad Sci USA 74: 5584–5588PubMedCrossRefGoogle Scholar
  2. Axline SG, Reaven EP (1974) J Cell Biol 62: 647–659PubMedCrossRefGoogle Scholar
  3. Bianco C, Griffin FM Jr, Silverstein SC (1975) J Exp Med 141: 1278–1290PubMedCrossRefGoogle Scholar
  4. Carpenter G, King L Jr, Cohen S (1978) Nature 276: 409–410PubMedCrossRefGoogle Scholar
  5. Diamond B, Bloom BR, Scharff MD (1978) J Immunol 121: 1329–1340PubMedGoogle Scholar
  6. Griffin FM Jr, Silverstein SC (1974) J Exp Med 139: 323–336PubMedCrossRefGoogle Scholar
  7. Griffin FM Jr, Griffin JA, Leider JE, Silverstein SC (1975 a) J Exp Med 142: 1263–1282Google Scholar
  8. Griffin FM Jr, Bianco C, Silverstein SC (1975 b) J Exp Med 141: 1269–1277Google Scholar
  9. Griffin FM Jr, Griffin JA, Silverstein SC (1976) J Exp Med 144: 788–809PubMedCrossRefGoogle Scholar
  10. Griffin JA, Griffin FM Jr (1979) J Exp Med 150: 643–675.Google Scholar
  11. Haigler TA, McKanna JA, Cohen S (1979) J Cell Biol 81: 382–395PubMedCrossRefGoogle Scholar
  12. Hartwig JH, Stossel TP (1976) J Cell Biol 71: 295–303PubMedCrossRefGoogle Scholar
  13. Heusser CH, Anderson CL, Grey HM (1977) J Exp Med 145: 1316–1327PubMedCrossRefGoogle Scholar
  14. Hirata F, Axelrod J (1980) Science 209: 1082–1090PubMedCrossRefGoogle Scholar
  15. Hoffstein S (1979) J Immunol 123: 1395–1402PubMedGoogle Scholar
  16. Horwitz MA, Silverstein SC (1980) J Clin Invest 65: 82–94PubMedCrossRefGoogle Scholar
  17. Karnovsky ML, Lazdins J, Simmons SR (1975) In: van Furth R (ed) Mononuclear phagocytes in immunity, infection and pathology. Blackwell, Oxford, England p 423Google Scholar
  18. Lin DC, Tobin KD, Grumet M, Lin S (1980) J Cell Biol 84: 455–460PubMedCrossRefGoogle Scholar
  19. Loike JD, Kozler VF, Silverstein SC (1979) J Biol Chem 254: 9558–9564PubMedGoogle Scholar
  20. Mellman IS, Unkeless JC (1980) J Exp Med 152: 1048–1069PubMedCrossRefGoogle Scholar
  21. Michl J, Ohlbaum DJ, Silverstein SC (1976) J Exp Med 144: 1484–1493PubMedCrossRefGoogle Scholar
  22. Michl J, Pieczonka MM, Unkeless JC, Silverstein SC (1979 a) J Exp Med 150: 607–621Google Scholar
  23. Michl J, Unkeless JC, Pieczonka MM, Silverstein SC (1979 b) J Cell Biol 83:295 aGoogle Scholar
  24. Niedel J, Kahane I, Cuatrecasas P (1979) Science 205: 1412–1414PubMedCrossRefGoogle Scholar
  25. Phaire-Washington L, Silverstein SC, Wang E (1980) J Cell Biol 86: 641–655PubMedCrossRefGoogle Scholar
  26. Poo MM, Cone RA (1974) Nature 247: 438–441PubMedCrossRefGoogle Scholar
  27. Rabinovitch M, Maneijas RE, Nussenzweig V (1975) J Exp Med 142: 827–838PubMedCrossRefGoogle Scholar
  28. Reaven EP, Axline SG (1973) J Cell Biol 59: 12–27PubMedCrossRefGoogle Scholar
  29. Schlessinger J, Webb WW, Elson EL, Metzger H (1976) Nature 264: 550–552PubMedCrossRefGoogle Scholar
  30. Schreiner GF, Unanue ER (1976) Adv Immunol 24: 38–165Google Scholar
  31. Steinman RM, Silver JM, Cohn ZA (1974) J Cell Biol 63: 949–969PubMedCrossRefGoogle Scholar
  32. Stendahl OI, Hartwig JH, Brotschi BA, Stossel TP (1980) J Cell Biol 84: 215–224PubMedCrossRefGoogle Scholar
  33. Taylor RB, Duffus WPH, Raff MC, de Petris S (1971) Nature 233: 225–229CrossRefGoogle Scholar
  34. Unanue ER, Perkins WD, Karnovsky MJ (1972) J Exp Med 136: 885–906PubMedCrossRefGoogle Scholar
  35. Unkeless JC (1977) J Exp Med 145: 931–947PubMedCrossRefGoogle Scholar
  36. Unkeless JC (1979) J Exp Med 150: 580–596PubMedCrossRefGoogle Scholar
  37. Van Oss CJ (1978) Annu Rev Microbiol 32: 19–39PubMedCrossRefGoogle Scholar
  38. Wang E, Edelson PJ, Goldberg AR, Bianco C (1977) J Cell Biol 75:255 aGoogle Scholar
  39. Yahara I, Edelman GM (1973) Exp Cell Res 81: 143–155PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • S. C. Silverstein
  • J. Michl
  • J. D. Loike
    • 1
  1. 1.Laboratory of Cellular Physiology and ImmunologyRockefeller UniversityNew YorkUSA

Personalised recommendations