Microfilament-Membrane Interactions in Cell Shape and Surface Architecture

  • J. Condeelis


Since the first conference on cell motility in 1963 (Allen and Kamiya) substantial evidence has been acquired that sliding interactions between myosin and filaments of actin power many forms of motility exhibited by eucaryotic cells such as muscle contraction, amoeboid movement, cytoplasmic streaming, changes in cell shape, saltatory particle movement, redistribution of cell surface components, endocytosis and exocytosis (Taylor and Condeelis 1979; Condeelis 1980). A logical and necessary assumption in how sliding interactions between actin and myosin move the cell and its components is that either one or both of these proteins must be attached to cell membranes. A brief survey of the literature for examples of microfilament-membrane interactions provides both biochemical (Wickus et al. 1975; Weihing 1976; Ceccarini et al. 1978; Spudich 1974; Koch and Smith 1978; Condeelis 1979) and morphological (Pollard and Korn 1973; Mooseker and Tilney 1975; Schroeder 1973; Goldman et al. 1976; Begg et al. 1978; Condeelis 1979; Salisbury et al. 1980) evidence that such interactions occur. It is also clear from these studies that microfilamentmembrane interactions occur with differences in morphology and stability that are probably significant for the function of these structures. These differences also suggest that there may be multiple mechanisms by which microfilament-membrane interactions occur although as yet none of these mechanisms have been elucidated.


Actin Filament Cell Cortex Actin Binding Protein Coated Vesicle Cortical Actin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertini D, Berlin R, Oliver J (1977) J Cell Sci 26: 57–75PubMedGoogle Scholar
  2. Allen RD, Kamiya N (1963) In: Cell biology. Academic Press, New YorkGoogle Scholar
  3. Angerer C (1936) J Cell Comp Physiol 8: 329–345CrossRefGoogle Scholar
  4. Begg D, Rodewald R, Rebhun L (1978) J Cell Biol 79: 846–852PubMedCrossRefGoogle Scholar
  5. Bradley T, Satir P (1979) J Supramol Struct 12: 165–175PubMedCrossRefGoogle Scholar
  6. Bretscher A, Weber K (1978) Exp Cell Res 116: 397–407PubMedCrossRefGoogle Scholar
  7. Bryan J, Kane R (1978) J Mol Biol 125: 207–224PubMedCrossRefGoogle Scholar
  8. Burgess D, Schroeder T (1977) J Cell Biol 74: 1032–1037PubMedCrossRefGoogle Scholar
  9. Burridge K, Phillips J (1975) Nature 254: 526–529PubMedCrossRefGoogle Scholar
  10. Cohen C, Branton D (1979) Nature 279: 163–165PubMedCrossRefGoogle Scholar
  11. Condeelis J (1979) J Cell Biol 80: 751–758PubMedCrossRefGoogle Scholar
  12. Condeelis J (1980) In: Lasek R, Shelanski M (eds) The cytoskeleton and architecture of the nervous system, vol 18. Neurosciences Research Program BulletinGoogle Scholar
  13. Condeelis J, Geosits S (1979) J Cell Biol 83:315 aGoogle Scholar
  14. Condeelis J, Geosits S (1981) J Biol Chem, in pressGoogle Scholar
  15. Condeelis J, Taylor D (1977) J Cell Biol 74: 901–927PubMedCrossRefGoogle Scholar
  16. Condeelis J, Wolosewick J (1980) In: Bailey G (ed) 38th Ann Proc EMSA, pp 420–423 Costantino-Ceccarini E, Novikoff P, Atkinson PGoogle Scholar
  17. Norvikoff A (1978) J Cell Biol 77: 448–465CrossRefGoogle Scholar
  18. Gabbiani G, Chaponnier C, Zumbe C, Vassalli P (1977) Nature 269: 697–698PubMedCrossRefGoogle Scholar
  19. Goldman R, Yerna M, Schloss J (1976) J Supromol Struct 5: 155–183CrossRefGoogle Scholar
  20. Goldman R, Chojnacki B, Goldnlan A, Storger J, Steinert P, Talian J, Whitmrfi M, Zackroff R (1980) In: Lasek R, Shelanski M (eds) The cytoskeleton and the architecture of the nervous system, vol 18. Neurosciences Research Program BulletinGoogle Scholar
  21. Hellewell S, Taylor D (1979) J Cell Biol 83: 633–648PubMedCrossRefGoogle Scholar
  22. Heuser J, Kirchner M (1970) J Cell Biol 86: 212–234CrossRefGoogle Scholar
  23. Huxley H (1963) J Mol Biol 7: 281–308PubMedCrossRefGoogle Scholar
  24. Ishikawa H, Bischoff R, Holtzer H (1969) J Cell Biol 43: 312–328PubMedCrossRefGoogle Scholar
  25. Izzard C, Lockner L (1976) J Cell Sci 21: 129–159PubMedGoogle Scholar
  26. Jennings H (1904) Contributions to the study of the behavior of lower organisms. Carnegie Institute, Washington, DCCrossRefGoogle Scholar
  27. Kane R (1976) J Cell Biol 71: 704–714PubMedCrossRefGoogle Scholar
  28. Koch G, Smith M (1978) Nature 273: 274–278PubMedCrossRefGoogle Scholar
  29. Komnick H, Stokem W, Wohlfarth-Bottermann K (1973) Int Rev Cytol 34: 169–249CrossRefGoogle Scholar
  30. Landau J, Zimmermann A, Marsland D (1954) J Cell Physiol 44: 211–232PubMedCrossRefGoogle Scholar
  31. Lazarides E (1975) J Histochem Cytochem 23: 507–528PubMedCrossRefGoogle Scholar
  32. Maruta H, Korn E (1977) J Biol Chem 252: 399–402PubMedGoogle Scholar
  33. Mast S (1926) J Morphol Physiol 41: 347–425CrossRefGoogle Scholar
  34. Matsudaira P, Burgess D (1979) J Cell Biol 83: 667–673PubMedCrossRefGoogle Scholar
  35. Meyer D, Burger M (1979) FEBS Lett 101: 129–133PubMedCrossRefGoogle Scholar
  36. Mimura N, Asano H (1979) Nature 282: 44 48Google Scholar
  37. Moore PL, Bank H, Brissie N, Spicer S (1976) J Cell Biol 71: 659–666PubMedCrossRefGoogle Scholar
  38. Mooseker M, Tilney L (1975) J Cell Biol 67: 725–743PubMedCrossRefGoogle Scholar
  39. Oliver J, Krawiec J, Becker E (1978) J Reticuloendothe Soc 24: 697–704Google Scholar
  40. Pollard T, Korn E (1973) J Biol Chem 248: 448–450PubMedGoogle Scholar
  41. Salisbury J, Condeelis J, Satir P (1980) J Cell Biol 87: 132–141.PubMedCrossRefGoogle Scholar
  42. Schloss J, Goldman R (1979) Proc Natl Acad Sci USA 76: 4484–4488PubMedCrossRefGoogle Scholar
  43. Schroeder T (1973) Proc Natl Acad Sci USA 70: 1688–1692PubMedCrossRefGoogle Scholar
  44. Singer S, Ash J, Bourguignon L, Hegeness M, Louvard D (1978) J Supramol Struct 9: 373–389PubMedCrossRefGoogle Scholar
  45. Spudich J (1974) J Biol Chem 249: 6013–6021PubMedGoogle Scholar
  46. Spudich J, Amos L (1979) J Mol Biol 129: 319–331PubMedCrossRefGoogle Scholar
  47. Stossel T, Hartwig J (1976) J Cell Biol 68: 602–619PubMedCrossRefGoogle Scholar
  48. Taylor DL, Condeelis J (1979) Int Rev Cytol 56: 57–142PubMedCrossRefGoogle Scholar
  49. Tilney L (1978) J Cell Biol 77: 551–564PubMedCrossRefGoogle Scholar
  50. Toh B, Hard G (1977) Nature 269: 695–697PubMedCrossRefGoogle Scholar
  51. Verworn M (1913) Irritability. Yale University Press, New Haven, Conn. 1–47Google Scholar
  52. Wang K, Ash J, Singer SJ (1975) Proc Natl Acad Sci USA 72: 4483–4483PubMedCrossRefGoogle Scholar
  53. Weihing R (1976) In: Goldman R, Pollard T, Rosenbaum J (eds) Cell motility book B, pp 671–684Google Scholar
  54. Wickus G, Gruenstein E, Robbins P, Rich A (1975) Proc Natl Acad Sci USA 72: 746–749PubMedCrossRefGoogle Scholar
  55. Wolosewich J, Condeelis J (1981) Cell, in pressGoogle Scholar
  56. Wolosewick J, Porter K (1979) J Cell Biol 82: 114–139PubMedCrossRefGoogle Scholar
  57. Wolosewick J, Becker R, Condeelis J (1980) In: DeBrabander M (ed) Microtubles and microtubule inhibitors. Elsevier/North HollandGoogle Scholar
  58. Woodrum D, Rich S, Pollard T (1975) J Cell Biol 67: 231–237PubMedCrossRefGoogle Scholar
  59. Yin H, Stossel T (1979) Nature 281: 583–586PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • J. Condeelis
    • 1
  1. 1.Department of AnatomyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations