Water Waves and Problems of Infinite Time Control

  • David L. Russell
  • Russell M. Reid


Our objective in this brief report is to study the control of small amplitude waves on the surface of an incompressible fluid and to show that the resulting control problem, which requires a semi-infinite time interval for its solution, introduces phenomena which motivate the development of a general approach to controllability significantly different from that commonly used for systems with a finite control time. The reader is referred to [1],[2],[3] for background on water waves and to [4] for an abstract formulation of control problems in general.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.J. Stoker: “Water Waves”, Interscience Pub. Co., New York, 1957.MATHGoogle Scholar
  2. [2]
    C.A. Coulson: “Waves: A Mathematical Account of the Common Type of Wave Motion”, Oliver and Boyd, Edinburgh and London, 1955.Google Scholar
  3. [3]
    A. Friedman and M. Shinbrot: “The initial value problem for the linearized equations of water waves”, J. Math. Mech. 17 (1967), 107 ff.MathSciNetMATHGoogle Scholar
  4. [4]
    S. Dolecki and D. L. Russell: “A general theory of observation and control”, S3AM J. on Contr. Opt., 15 (1977), 185–220.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    J. L. Lions and E. Magenes: “Problèmes aux limites nonhomogènes et applications”, Vols. I, II, Dunod, Paris, 1968.Google Scholar
  6. [6]
    T. Kato: “Perturbation Theory for Linear Operators”, McGraw-Hill, New York, 1966.CrossRefMATHGoogle Scholar
  7. [7]
    D. Russell: “A unified boundary controllability theory for hyperbolic and parabolic partial differential equations”, Stud. Appl. Math., III (1973), 189–211.Google Scholar
  8. [8]
    D. Russell: “Exact boundary value controllability theorems for wave and heat processes in star-complemented regions”, in “Differential Games and Control Theory”, Roxin, Liu, Sternberg, Eds., Marcel Dekker, Inc., New York, 1974.Google Scholar
  9. [9]
    G. Chen: “Energy decay estimates and control theory for the wave equation in a bounded domain”, Thesis, University of Wisconsin, Madison, 1977. To appear in SIAM J. Contr. Opt.Google Scholar
  10. [10]
    N. Levinson, “Gap and Density Theorems”, Am. Math. Soc. Colloq. Pub., Vol. 26, Providence, R.I., 1940.Google Scholar
  11. [11]
    E.T. Whitaker and G. N. Watson, “A Course of Modern Analysis”, 4th Ed., Cambridge, 1927 (Reprinted 1963).Google Scholar
  12. [12]
    K. Hoffman; “Banach Spaces of Analytic Functions”, Prentice Hall, Englewood Cliffs, N.J., 1962.MATHGoogle Scholar
  13. [13]
    J. P. Quinn and D. L. Russell, “Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping”, Proc. Royal Soc. Edin., 77A(1977), 97–127.MathSciNetMATHGoogle Scholar
  14. [14]
    D. L. Lukes and D.L. Russell, “The quadratic criterion for distributed systems”, SAM J. Contr., 7 (1969), 101–121.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • David L. Russell
    • 1
  • Russell M. Reid
    • 1
  1. 1.University of WisconsinMadisonUSA

Personalised recommendations