Analysis on Manifolds

  • Walter Thirring


The intuitive picture of a smooth surface becomes analytic with the concept of a manifold. On the small scale a manifold looks like a Euclidean space, so that infinitesimal operations like differentiation may be defined on it.


Vector Field Open Subset Tangent Space Tangent Bundle Inverse Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. W. M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry. New York: Academic Press, 1975.MATHGoogle Scholar
  2. Th. Bröcker and K. Jänich. Einführung in die Differentialtopologie. Heidelberger Taschenbücher 143. Heidelberg: Springer-Verlag, 1973.CrossRefGoogle Scholar
  3. Y. Choquet-Bruhat, C DeWitt-Morette, and M. Dillard-Bleick. Analysis, Manifolds, and Physics. Amsterdam: North Holland, 1977.MATHGoogle Scholar
  4. V. Guillemin and A. Pollack. Differential Topology. Englewood Cliffs, New Jersey: Prentice-Hall, 1974.MATHGoogle Scholar
  5. R. Hermann. Vector Bundles in Mathematical Physics, vol. 1. New York: Benjamin, 1970.Google Scholar
  6. H. Holman and H. Rummler. Alternierende Differentialformen. Bibliographisches Institut, 1972.Google Scholar
  7. S. Kobayashi and K. Nomizu. Foundations of Differential Geometry, vol. 1. Interscience Tracts in Pure and Applied Mathematics No. 15, vol. 1. New York: Interscience, 1963.Google Scholar
  8. L. H. Loomis and S. Sternberg. Advanced Calculus. Reading, Massachusetts: Addison-Wesley, 1968.MATHGoogle Scholar
  9. E. Nelson. Tensor Analysis. Princeton: Princeton University Press, 1967.MATHGoogle Scholar
  10. M. Spivak. Calculus on Manifolds; A Modern Approach to Classical Theorems of Advanced Calculus. New York: Benjamin, 1965.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Walter Thirring
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of ViennaAustria

Personalised recommendations