Skip to main content

The Modified LR Algorithm for Complex Hessenberg Matrices

  • Chapter
Book cover Linear Algebra

Part of the book series: Handbook for Automatic Computation ((HDBKAUCO,volume 2))

  • 759 Accesses

Abstract

The LR algorithm of Rutishauser [3] is based on the observation that if

$$A = LR $$
((1))

where L is unit lower-triangular and R is upper-triangular then B defined by

$$B = {L^{ - 1}}AL = RL$$
((2))

is similar to A. Hence if we write

$${A_s} = {L_s}{R_s},\quad {R_s}{L_s} = {A_{s + 1}}$$
((3))

, a sequence of matrices is obtained each of which is similar to A 1. Rutishauser showed [3, 4, 5] if A 1 has roots of distinct moduli then, in general A s tends to upper triangular form, the diagonal elements tending to the roots arranged in order of decreasing modulus. If A 1 has some roots of equal modulus then A s does not tend to strictly triangular form but rather to block-triangular form. Corresponding to a block of k roots of the same modulus there is a diagonal block of order k which does not tend to a limit, but its roots tend to the k eigenvalues.

Prepublished in Numer. Math. 12, 369–376 (1968).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Francis, J. G. F.: The QR transformation — a unitary analogue to the LR transformation. Comput. J. 4, 265–271 and 332–345 (1961/62).

    Article  MathSciNet  MATH  Google Scholar 

  2. Parlett, B. N.: The development and use of methods of LR type. SIAM Rev. 6, 275–295 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  3. Rutishauser, H.: Solution of eigenvalue problems with the LR transformation. Nat. Bur. Standards Appl. Math. Ser. 49, 47–81 (1958).

    MathSciNet  Google Scholar 

  4. Wilkinson, J. H.: The algebraic eigenvalue problem. London: Oxford University Press 1965.

    MATH  Google Scholar 

  5. Wilkinson, J. H.: Convergence of the LR, QR and related algorithms. Comput. J. 8, 77–84 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  6. Parlett, B. N., and C. Reinsch: Balancing a matrix for calculation of eigenvalues and eigenvectors. Numer. Math. 13, 293–304 (1969). Cf. II/11.

    Article  MathSciNet  MATH  Google Scholar 

  7. Martin, R. S., and J. H. Wilkinson: Similarity reduction of a general matrix to Hessenberg form. Numer. Math. 12, 349–368 (1968). Cf. II/13-

    Article  MathSciNet  MATH  Google Scholar 

  8. Martin, R. S., G. Peters and J. H. Wilkinson: The QR algorithm for real Hessenberg matrices. Numer. Math. 14, 219–231 (1970). Cf. II/14.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martin, R.S., Wilkinson, J.H. (1971). The Modified LR Algorithm for Complex Hessenberg Matrices. In: Bauer, F.L. (eds) Linear Algebra. Handbook for Automatic Computation, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-39778-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-39778-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-38854-9

  • Online ISBN: 978-3-662-39778-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics