Linear Algebra pp 257-265 | Cite as

Rational QR Transformation with Newton Shift for Symmetric Tridiagonal Matrices

  • C. Reinsch
  • F. L. Bauer
Part of the Handbook for Automatic Computation book series (HDBKAUCO, volume 2)


If some of the smallest or some of the largest eigenvalues of a symmetric (tridiagonal) matrix are wanted, it suggests itself to use monotonic Newton corrections in combination with QR steps. If an initial shift has rendered the matrix positive or negative definite, then this property is preserved throughout the iteration. Thus, the QR step may be achieved by two successive Cholesky LR steps or equivalently, since the matrix is tridiagonal, by two QD steps which are numerically stable [4] and avoid square roots. The rational QR step used here needs slightly fewer additions than the Ortega-Kaiser step [3].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barth, W., R. S. Martin, and J. H. Wilkinson: Handbook series linear algebra. Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection. Numer. Math. 9, 386–393 (1967). Cf. II/5.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Kahan, W.: Accurate eigenvalues of a symmetric tri-diagonal matrix. Technical Report No. CS 41, Computer Science Department, Stanford University 1966.Google Scholar
  3. 3.
    Ortega, J. M., and H. F. Kaiser: The LL T and QR methods for symmetric tridiagonal matrices. Comput. J. 6, 99–101 (1963).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Rutishauser, H.: Stabile Sonderfälle des Quotienten-Differenzen-Algorithmus. Numer. Math. 5, 95–112 (1963).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Rutishauser, H. and H. R. Schwarz: The LR transformation method for symmetric matrices. Numer. Math. 5, 273–289 (1963).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Wilkinson, J. H.: Rounding errors in algebraic processes. Notes on applied science No. 32. London: Her Majesty’s Stationary Office 1963. German edition: Rundungsfehler. Berlin-Göttingen-Heidelberg: Springer 1969.Google Scholar
  7. 7.
    Wilkinson, J. H. The algebraic eigenvalue problem. Oxford: Clarendon Press 1965.MATHGoogle Scholar
  8. 8.
    Bauer, F. L.: QD-method with Newton shift. Techn. Rep. 56. Computer Science Department, Stanford University 1967.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1971

Authors and Affiliations

  • C. Reinsch
  • F. L. Bauer

There are no affiliations available

Personalised recommendations