Skip to main content

Thermal Conductivity of Solids at Low Temperatures

  • Chapter
Low Temperature Physics I / Kältephysik I

Part of the book series: Encyclopedia of Physics / Handbuch der Physik ((HDBPHYS,volume 3 / 14))

Abstract

The most important mechanisms of heat transfer in solids are transfer by the lattice waves and transfer by the conduction electrons, and consequently the materials to be studied are broadly divided into three groups: (i) non-metals, where transfer is only by lattice waves, (ii) metals, where transfer is mainly by the conduction electrons and lattice conduction, though present, is unimportant, and (iii) alloys and other badly conducting metallic solids, where the electronic conductivity is so small that both processes are important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Review Papers and Books

  1. Sommerfeld, A., u. H. Bethe: Electron Theory of Metals. In Handbuch der Physik, Vol. 24/2. 1933.

    Google Scholar 

  2. Born, M., u. M. Goeppert-Mayer: Dynamical Theory of Crystal Lattices. In Handbuch der Physik, Vol. 24/2. 1933.

    Google Scholar 

  3. Mott, N. F., and H. Jones: Theory of the Properties of Metals and Alloys. Oxford: University Press 1936.

    Google Scholar 

  4. Wilson, A. H.: Theory of Metals, 2nd ed. Cambridge: University Press 1953.

    Google Scholar 

  5. Berman, R.: Adv. Physics 2, 103 (1953); thermal conductivity of dielectric solids at low temperatures.

    ADS  Google Scholar 

  6. Olsen, J. L., and H. M. Rosenberg: Adv. Physics 2, 28 (1953); thermal conductivity of metals at low temperatures.

    ADS  Google Scholar 

  7. Powell, R. L., and W. A. Blanpied: Thermal Conductivity of Metals and Alloys at Low Temperatures —A Review of the Literature. United States National Bureau of Standards, Circular No. 556 (1954).

    Google Scholar 

Thermal Conductivity of Non-metals, Theory

  1. Debye, P.: Equation of State and the Quantum Hypothesis with an Appendix on Thermal Conduction, in: Vorträge über die kinetische Theorie der Materie und Elektrizität. Berlin: Teubner 1914.

    Google Scholar 

  2. Peierls, R.: Ann. Phys., Lpz. 3, 1055 (1929); kinetic theory of thermal conduction in dielectric crystals.

    ADS  MATH  Google Scholar 

  3. Peierls, R.: Ann. Inst. Poincaré 5, 177 (1935); lattice periodicity and properties of solids

    MATH  MathSciNet  Google Scholar 

  4. Casimir, H. B. G.: Physica, Haag 5, 495 (1938); thermal resistance at low temperatures due to external boundaries.

    ADS  Google Scholar 

  5. Landau, L., and G. Rumer: Phys. Z. Sowjet. 11, 18 (1937); scattering of transverse waves due to cubic anharmonicities.

    MATH  Google Scholar 

  6. Pomeranchuk, I.: J. Phys. USSR. 4, 259 (1941); insufficiency of three-phonon interactions, acting alone, to maintain equilibrium of low-frequency longitudinal waves at high temperatures.

    Google Scholar 

  7. Pomeranchuk, I.: J. Phys. USSR. 6, 237 (1942); thermal conduction at low temperatures, role of longitudinal waves, effects of boundary and imperfections.

    Google Scholar 

  8. Pomeranchuk, I.: J. Phys. USSR. 7, 197 (1943); effect of four-phonon interactions.

    Google Scholar 

  9. Froehlich, H., and W. Heitler: Proc. Roy. Soc. Lond., Ser. A 155, 640 (1936); thermal conductivity of paramagnetic crystals.

    ADS  MATH  Google Scholar 

  10. Pomeranchuk, I.: J. Phys. USSR. 4, 357 (1941); thermal conductivity of paramagnetic solids at low temperatures.

    Google Scholar 

  11. Akhieser, A., and I. Pomeranchuk: J. Phys. USSR. 8, 216 (1944); thermal conductivity of salts used for magnetic cooling.

    Google Scholar 

  12. Kittel, C.: Phys. Rev. 75, 972 (1949); thermal conductivity of glasses.

    ADS  Google Scholar 

  13. Klemens, P. G.: Proc. Roy. Soc. Lond., Ser. A 208, 108 (1951); thermal conductivity of dielectric solids at low temperatures.

    ADS  MATH  Google Scholar 

  14. Klemens, P. G.: Proc. Phys. Soc. Lond. A 68, 1113 (1955); scattering of low-frequency phonons by static imperfections.

    ADS  MATH  Google Scholar 

  15. Herpin, A.: Ann. Physique 7, 91 (1952); three-phonon interactions and thermal conduction.

    MATH  MathSciNet  Google Scholar 

  16. Herring, C.: Phys. Rev. 95, 954 (1954); role of low-energy phonons in thermal conduction.

    ADS  MATH  Google Scholar 

  17. Leibfried, G., u. E. Schloemann: Nachr. Akad. Wiss. Göttingen IIa, No. 4, 71 (1954); thermal conductivity of dielectric solids by a variational technique.

    Google Scholar 

Thermal Conductivity of Non-metals, Experimental

  1. Eucken, A.: Ann. Phys., Lpz. 34, 185 (1911). — Verh. dtsch. phys. Ges. 13, 829 (1911). — Z. Physik 12, 1005 (1911); thermal conductivity of various crystals below room temperature.

    ADS  Google Scholar 

  2. Eucken, A., u. G. Kuhn: Z. phys. Chem. 134, 193 (1928); thermal conductivity of mixed crystals.

    Google Scholar 

  3. Eucken, A., u. E. Schroeder: Ann. Phys., Lpz. 36, 609 (1939); thermal conductivity of solidified benzene, hydrogen bromide and nitrous oxide.

    ADS  Google Scholar 

  4. Haas, W. J. de, and T. Biermasz: Physica, Haag 2, 673 (1935); low temperature thermal conductivity of quartz.

    ADS  Google Scholar 

  5. Haas, W. J. de, and T. Biermasz: Physica, Haag 4, 752 (1937); low temperature thermal conductivity of quartz, potassium chloride and potassium bromide.

    ADS  Google Scholar 

  6. Haas, W. J. de, and T. Biermasz: Physica, Haag 5, 47, 320, 619 (1938); boundary resistance observed for quartz, diamond, potassium chloride.

    ADS  Google Scholar 

  7. Kurti, N., B. V. Rollin and F. Simon: Physica, Haag 3, 266 (1936); thermal conductivity of single crystals of potassium chrome alum and iron ammonium alum below 0.2° K.

    ADS  Google Scholar 

  8. Dijk, H. van, and W. H. Keesom: Physica, Haag 7, 970 (1940); thermal conductivity or iron ammonium alum (compressed).

    ADS  Google Scholar 

  9. Gerritsen, A. N., and P. van der Star: Physica, Haag 9, 503 (1942); thermal conductivity of solid methane.

    ADS  Google Scholar 

  10. Bijl, D.: Physica, Haag 14, 684 (1949); thermal conductivity of potassium chrome alum and some glasses.

    ADS  Google Scholar 

  11. Hudson, R. P.: Thesis, Oxford (1949); thermal conductivity of iron ammonium alum (compressed) below 0.2° K.

    Google Scholar 

  12. Wilkinson K. R., and J. Wilks: J. Sci. Instrum. 26, 19 (1949); thermal conductivity of glass and some technical alloys.

    ADS  Google Scholar 

  13. Garrett, C. B. G.: Phil. Mag. 41, 621 (1950); thermal conductivity of potassium chrome alum below 0.3° K.

    Google Scholar 

  14. Berman, R.: Phys. Rev. 76, 315 (1949); thermal conductivity of quartz glass at low temperature.

    ADS  Google Scholar 

  15. Berman, R.: Proc. Roy. Soc. Lond., Ser. A 208, 90 (1951); thermal conductivity of glass, quartz, neutron-irradiated quartz and synthetic sapphire.

    ADS  Google Scholar 

  16. Berman, R., F. E. Simon, P. G. Klemens and T. M. Fry: Nature, Lond. 166, 277 (1950); thermal conductivity of neutron-irradiated quartz.

    Google Scholar 

  17. Berman, R.: Proc. Phys. Soc. Lond. A 65, 1029 (1952); thermal conductivity of polycrystalline alumina, beryllia and graphite.

    ADS  Google Scholar 

  18. Wilkinson, K. R., and J. Wilks: Proc. Phys. Soc. Lond., A 64, 89 (1951); thermal conductivity of solid helium.

    ADS  Google Scholar 

  19. Berman, R., F. E. Simon and J. Wilks: Nature, Lond. 168, 277 (1951); Umklappresistance in various dielectric solids.

    ADS  Google Scholar 

  20. Webb, F. J., K. R. Wilkinson and J. Wilks: Proc. Roy. Soc. Lond., Ser. A 214, 546 (1953); thermal conductivity of solid helium.

    ADS  Google Scholar 

  21. Webb, F. J., and J. Wilks: Phil. Mag. 44, 664 (1953); thermal conductivity of solid helium.

    Google Scholar 

  22. Berman, R., F. E. Simon and J. M. Ziman: Proç. Roy. Soc. Lond., Ser. A 220, 171 (1953); thermal conductivity and size effect of diamond.

    ADS  Google Scholar 

  23. Devyatkova, D., and L. S. Stilbans: Zh. Tekh. Fiz. 22, 968 (1952); influence of F-centres on thermal conductivity of potassium chloride.

    Google Scholar 

  24. Smith, A. W.: Phys. Rev. 95, 1095 (1954); thermal conductivity of graphite.

    ADS  Google Scholar 

  25. Estermann, T., and J. E. Zimmerman: Technical Report 6, O.N.R. Carnegie Institute of Technology, USA. (1951).

    Google Scholar 

  26. Rosenberg, H. M.: Proc. Phys. Soc. Lond. A 67, 837 (1954); thermal conductivity of silicon and germanium.

    ADS  Google Scholar 

  27. Berman, R.: To be published; thermal conductivity of some alkali halides.

    Google Scholar 

  28. Berman, R., E. L. Foster and J. M. Ziman: Proc. Roy. Soc. Lond.. Ser. A 231, 130 (1955); thermal conductivity and size effect of artificial sapphires.

    ADS  Google Scholar 

  29. Simson, C. v.: Naturwiss. 38, 559 (1951); thermal conductivity of ammonium chloride.

    ADS  Google Scholar 

  30. Uhlir, A.: J. Chem. Phys. 20, 463 (1953); thermal conductivity of fluid argon and nitrogen.

    ADS  Google Scholar 

  31. Prosad, S.: Brit. J. Appl. Phys. 3, 58 (1952); thermal conductivity of liquid oxygen.

    ADS  Google Scholar 

  32. Grenier, C.: Phys. Rev. 83, 598 (1951); thermal conductivity of liquid helium I.

    ADS  Google Scholar 

  33. Bowers, R.: Proc. Phys. Soc. Lond., A 65, 511 (1952); thermal conductivity of liquid helium I.

    ADS  Google Scholar 

  34. Fairbank, H. A., and J. Wilks: Phys. Rev. 95, 277 (1954); Proc. Roy. Soc. Lond., Ser. A 231, 545 (1955); thermal conductivity of liquid helium below 1° K.

    ADS  Google Scholar 

Thermal Conductivity of Metals, Theory

  1. Bloch, F.: Z. Physik 52, 555 (1928); interaction between electrons and lattice, electronic conduction in metals.

    ADS  MATH  Google Scholar 

  2. Wilson, A. H.: Proc. Camb. Phil. Soc. 33, 371 (1937); first order approximation to solution of transport equation for electrical and thermal conduction.

    ADS  MATH  Google Scholar 

  3. Makinson, R. E. B.: Proc. Camb. Phil. Soc. 34, 474 (1938); numerical evaluation of electronic thermal conductivity, treatment of lattice component, influence of anisotropy of phonon distribution on the electronic component.

    ADS  Google Scholar 

  4. Kohler, M.: Z. Physik 124, 772 (1948); 125, 679 (1949); solution of transport equation by variational method and application to electronic conduction properties.

    ADS  MATH  MathSciNet  Google Scholar 

  5. Kroll, W.: Sci. Papers Inst. Phys. Chem. Res. Tokyo 34, 194 (1938); solution of transport equation by successive approximations.

    Google Scholar 

  6. Sondheimer, E. H.: Proc. Roy. Soc. Lond., Ser. A 203, 75 (1950); solution of transport equation to third order by the variational method.

    ADS  MATH  MathSciNet  Google Scholar 

  7. Sondheimer, E. H.: Proc. Phys. Soc. Lond., Ser. A 65, 561, 562 (1952); modification of theory for small number of conduction electrons.

    ADS  MATH  Google Scholar 

  8. Toda, M.: J. Phys. Soc. Japan 8, 339 (1953); diffusion on the Fermi surface and conductivity.

    ADS  Google Scholar 

  9. Blatt, F. J.: J. Phys. Soc. Japan 9, 444 (1954); diffusion on the Fermi surface, evaluation of thermal conductivity by numerical solution.

    ADS  Google Scholar 

  10. Makinson, R. E. B.: Proc. Phys. Soc. Lond., Ser. A 67, 290 (1954); comment on stationarity in Sondheimer’s variational treatment.

    ADS  MATH  Google Scholar 

  11. Klemens, P. G.: Proc. Phys. Soc. Lond., Ser. A 67, 194 (1954); Austral. J. Phys. 7, 64 (1954); numerical solution of transport equation for pure metals at low temperatures.

    ADS  MATH  Google Scholar 

  12. Klemens, P. G.: Proc. Phys. Soc. Lond., Ser. A 67, 194 (1954); Austral. J. Phys. 7, 70 (1954); modification of electronic band structure of monovalent metals to account for low temperature conduction properties.

    ADS  MATH  Google Scholar 

  13. Ziman, J. M.: Proc. Roy. Soc. Lond., Ser. A 226, 436 (1954); modification of electron-phonon interaction parameter to account for conduction properties.

    ADS  MATH  Google Scholar 

  14. Klemens, P. G.: Austral. J. Phys. 7, 57 (1954); lattice component of thermal conductivity and electron-phonon interaction.

    ADS  Google Scholar 

  15. Rezanov, A. J., and V. J. Cherepanov: Proc. Acad. Sci. USSR. 93, 641 (1953); low temperature thermal conductivity of ferromagnetic metals.

    MATH  Google Scholar 

  16. Sondheimer, E. H., and A. H. Wilson: Proc. Roy. Soc. Lond., Ser. A 190, 435 (1947); magneto-resistance effects in metals assuming relaxation times.

    ADS  MATH  Google Scholar 

  17. Kohler, M.: Naturwiss. 36, 186 (1949); similarity rule for thermal resistance in magnetic fields.

    ADS  Google Scholar 

  18. Kohler, M.: Ann. Phys., Lpz. 5, 181 (1949); thermal conduction in strong magnetic fields, extrapolation for the lattice component.

    ADS  MATH  Google Scholar 

  19. Kohler, M.: Ann. Phys., Lpz. 6, 18 (1949); magneto-resistance effects, first order variational treatment.

    MATH  Google Scholar 

  20. Akhieser, A, and I. Pomeranchuk: J. Phys. USSR. 9, 93 (1945); thermal conductivity of bismuth.

    Google Scholar 

Thermal Conductivity of Metals, Experimental

  1. Meissner, W.: Ann. Phys., Lpz. 47, 1001 (1915). — Z. Physik 2, 373 (1915); thermal conductivity of Li, Au and Pt down to liquid hydrogen temperatures.

    ADS  Google Scholar 

  2. Bidwell, C. C.: Phys. Rev. 27, 819 (1926); 28, 584 (1926); thermal conductivity of lithium and sodium.

    Google Scholar 

  3. Grüneisen, E., u. E. Goens: Z. Physik 44, 615 (1927); thermal conductivity down to liquid hydrogen temperatures of a wide range of metals. of high purity.

    ADS  Google Scholar 

  4. Grüneisen, E., u. H. Reddemann: Ann. Phys., Lpz. 20, 843 (1934); thermal conductivity of alloys, role of lattice conduction.

    ADS  Google Scholar 

  5. Berman, R., and D. K. C. MacDonald: Proc. Roy. Soc. Lond., Ser. A 209, 368 (1951); low temperature thermal conductivity of sodium.

    ADS  Google Scholar 

  6. Berman, R., and D. K. C. MacDonald: Proc. Roy. Soc. Lond., Ser. A 211, 122 (1952); low temperature thermal conductivity of copper.

    ADS  Google Scholar 

  7. Mendelssohn, K., and H. M. Rosenberg: Proc. Phys. Soc. Lond., Ser. A 65, 385 (1952); low temperature thermal conductivity of Cu, Ag, Au, Mg, Zn, Cd, Al and In.

    ADS  Google Scholar 

  8. Mendelssohn, K., and H. M. Rosenberg: Proc. Phys. Soc. Lond., Ser. A 65, 388 (1952); low temperature thermal conductivity of Ti, Mn, Fe, Ni, Zr, Cb, Mo, Rh, Pd, Ta, W, Ir, Pt, U and Pb.

    ADS  Google Scholar 

  9. Rosenberg, H. M.: Phil. Trans. Roy. Soc. Lond., Ser. A 247, 441 (1955); low temperature thermal conductivity of Cu, Ag, Au, Be, Mg, Zn, Cd, Al, Ga, In,Tl, Ti, Zr, Sn, Pb, V, Cb, Ta, Sb, Mo, W, Mn, Fe, Co, Ni, Rh, Pd, Ir, Pt, Ce, La and U.

    ADS  Google Scholar 

  10. White, G. K.: Proc. Phys. Soc. Lond. Ser. A 66, 559 (1953); low temperature thermal conductivity of gold.

    ADS  Google Scholar 

  11. White, G. K.: Proc. Phys. Soc. Lond., Ser. A 66, 844 (1953); low temperature thermal conductivity of silver.

    ADS  Google Scholar 

  12. White, G. K.: Austral. J. Phys. 6, 397 (1953); low temperature thermal conductivity of copper.

    ADS  Google Scholar 

  13. MacDonald, D. K. C., G. K. White and S. B. Woods: Proc. Roy. Soc. Lond., to be published; thermal conductivity of K, Rb and Cs at low temperatures.

    Google Scholar 

  14. Hulm, J. K.: Proc. Roy. Soc. Lond., Ser. A 204, 98 (1950); thermal conductivity of superconductors (Sn, Hg, In and Ta and dilute alloys) at liquid helium temperatures in normal and superconducting state.

    ADS  Google Scholar 

  15. Hulm, J. K.: Proc. Phys. Soc. Lond., Ser. A 65, 227 (1952); discussion of discrepancy between theory and experiments of ideal thermal resistivity.

    ADS  Google Scholar 

  16. Nobel, J. de: Physica, Haag 17, 551 (1951); low temperature thermal conductivity of Al, Fe, Ni, various steels and monel.

    ADS  Google Scholar 

  17. Andrews, F. A., R. T. Webber and D. A. Spohr: Phys. Rev. 84, 994 (1951); low temperature thermal conductivity of aluminium.

    ADS  Google Scholar 

  18. Kemp, W. R. G., A. K. Sreedhar and G. K. White: Proc. Phys. Soc. Lond., Ser. A 66, 1077 (1953); low temperature thermal conductivity of magnesium.

    ADS  Google Scholar 

  19. Rosenberg, H. M.: Phil. Mag. 45, 73 (1954); thermal and electrical conductivity of magnesium.

    Google Scholar 

  20. Spohr, D. A., and R. T. Webber: Phys. Rev. 95, 602 (1954) and private communication; thermal and electrical conductivity of magnesium.

    Google Scholar 

  21. Rosenberg, H. M.: Phil. Mag. 45, 767 (1954); anisotropy of thermal resistivity of gallium single crystals.

    Google Scholar 

  22. Kemp, W. R. G., P. G. Klemens, A. K. Sreedhar and G. K. White: Phil. Mag. 46, 811 (1955); low temperature thermal conductivity of palladium.

    Google Scholar 

  23. Nicol, J., and T. P. Tseng: Phys. Rev. 92, 1062 (1953); thermal conductivity of copper between 0.25 and 4.2° K.

    ADS  Google Scholar 

  24. Reddemann, H.: Ann. Phys., Lpz. 20, 441 (1934); thermal conductivity of a Bi single crystal in magnetic fields.

    ADS  Google Scholar 

  25. Grüneisen, E., and H. Adenstedt: Ann. Phys., Lpz. 29, 597 (1937); 31, 714 (1938); effect of transverse magnetic fields on thermal conductivity of some pure metals at liquid hydrogen temperatures.

    ADS  Google Scholar 

  26. Grüneisen, E., and H. D. Erfling: Ann. Phys., Lpz. 38, 399 (1940); electrical and thermal resistance of Be single crystals in transverse magnetic fields.

    ADS  Google Scholar 

  27. Rausch, K.: Ann. Phys., Lpz. 1, 190 (1947); thermal conductivity of Sb single crystal in magnetic fields.

    ADS  Google Scholar 

  28. Grüneisen, E., K. Rausch and K. Weiss: Ann. Phys., Lpz. 7, 1 (1950); electrical and thermal resistance of Bi single crystals in magnetic fields.

    ADS  Google Scholar 

  29. Haas, W. J. de, A. N. Gerritsen and W. H. Capel: Physica, Haag 3, 1143 (1936); thermal resistance of Bi single crystals in magnetic fields.

    Google Scholar 

  30. Haas, W. J. de, and J. de Nobel: Physica, Haag 5, 449 (1938); electrical and thermal resistance of W single crystal in magnetic fields.

    ADS  Google Scholar 

  31. Nobel, J. de: Physica, Haag 15, 532 (1949); thermal and electrical resistance of W single crystal in high magnetic fields.

    ADS  Google Scholar 

  32. Shalyt, S.: J. Phys. USSR. 8, 315 (1944); thermal conductivity of bismuth and effect of magnetic fields down to liquid helium temperatures.

    Google Scholar 

  33. Mendelssohn, K., and H. M. Rosenberg: Proc. Phys. Soc. Lond., Ser. A 64, 1057 (1951); thermal conductivity of cadmium in magnetic fields at liquid helium temperatures.

    ADS  Google Scholar 

  34. Mendelssohn, K., and H. M. Rosenberg: Proc. Roy. Soc. Lond., Ser. A 218, 190 (1953); thermal conductivity of various metals in magnetic fields at liquid helium temperatures, in particular Zn, Cd, Sn, Pb and Ga.

    ADS  Google Scholar 

  35. Karweil, J., u. K. Schäfer: Ann. Phys., Lpz. 36, 567 (1939); thermal conductivity of various alloys between 3 and 30° K.

    Google Scholar 

  36. Allen, J. F., and E. Mendoza: Proc. Camb. Phil. Soc. 44, 280 (1948); thermal conductivity of copper and German silver at liquid helium temperatures.

    ADS  Google Scholar 

  37. Hulm, J. K.: Proc. Phys. Soc. Lond., Ser. A 64, 207 (1951); thermal conductivity and lattice component of alloy Cu 90 – Ni 10.

    ADS  Google Scholar 

  38. Berman, R.: Phil. Mag. 42, 642 (1951); low temperature thermal conductivity and lattice component of German silver, stainless steel and Cu 60 –Ni 40.

    Google Scholar 

  39. Estermann, I., and J. E. Zimmerman: J. Appl. Phys. 23, 578 (1952); low temperature thermal conductivity and lattice component of monel, inconel, stainless steel and Cu 90 – Ni 10 and effect of cold work.

    ADS  Google Scholar 

  40. Kemp, W. R. G., P. G. Klemens, A. K. Sreedhar and G.K. White: Proc. Phys. Soc. Lond., Ser. A 67, 728 (1954); lattice component of thermal conductivity of Ag-Pd alloys.

    ADS  Google Scholar 

  41. Kemp, W. R. G., P. G. Klemens, A. K. Sreedhar and G. K. White: Proc. Roy. Soc. Lond., Ser. A 233, 41 (1956); thermal and electrical conductivities of Ag-Pd and Ag-Cd alloys.

    Google Scholar 

  42. White, G. K., and S.B. Woods: Phil. Mag. 45, 1343 (1954); lattice component of thermal conductivity of a dilute copper alloy.

    Google Scholar 

  43. White, G. K., and S.B. Woods: Canad. J. Phys. 33, 58 (1955); low temperature thermal conductivity and lattice component of copper alloys, Bi, Ge and Be.

    ADS  Google Scholar 

Thermal Conductivity of Superconductors

  1. Gorter, C. J., u. H. B. G. Casimir: Phys. Z. 35, 963 (1934). — Z. techn. Phys. 15, 539 (1934); two-fluid model of superconductivity.

    Google Scholar 

  2. Heisenberg, W.: Z. Naturforsch. 3a, 65 (1948); two-fluid model, including application to thermal conductivity of superconductors.

    ADS  MATH  Google Scholar 

  3. Klemens, P. G.: Proc. Phys. Soc. Lond., Ser. A 66, 576 (1953); electronic thermal conduction in superconductors and two-fluid circulation.

    ADS  MATH  Google Scholar 

  4. Cornish, F. H. J., and J.L. Olsen: Helv. Phys. Acta 26, 369 (1953); calculation of thermal conductivity of intermediate state, assuming loose coupling between electron and lattice temperatures.

    MATH  Google Scholar 

  5. Bremmer, H., and W. J. de Haas: Physica, Haag 3, 672 (1936); thermal conductivity of Pb and Cu.

    Google Scholar 

  6. Haas, W. J. de, and H. Bremmer: Physica, Haag 3, 687 (1936); thermal conductivity of mercury.

    Google Scholar 

  7. Bremmer, H., and W. J. de Haas: Physica, Haag 3, 692 (1936); thermal conductivity of some superconducting alloys.

    Google Scholar 

  8. Haas, W. J. de, and A. Rademakers: Physica, Haag 7, 992 (1940); thermal conductivity of lead in superconducting and normal states.

    ADS  Google Scholar 

  9. Rademakers, A.: Physica, Haag 15, 849 (1949); thermal conductivity of Pb and Sn in superconducting and normal states.

    ADS  Google Scholar 

  10. Mendelssohn, K., and R. B. Pontius: Phil. Mag. 24, 777 (1937); change of thermal conductivity of lead on going from normal to superconducting state.

    Google Scholar 

  11. Mendelssohn, K., and J. L. Olsen: Proc. Phys. Soc. Lond., Ser. A 63, 2 and 1182 (1950); Phys. Rev. 80, 859 (1950); thermal conductivity of lead and lead-bismuth alloys and intermediate state anomalies.

    ADS  Google Scholar 

  12. Olsen, J. L.: Proc. Phys. Soc. Lond., Ser. A 65, 518 (1952); thermal conductivity of lead-bismuth alloys and discussion in terms of enhanced lattice conduction.

    ADS  Google Scholar 

  13. Olsen, J. L., and C. A. Renton: Phil. Mag. 43, 946 (1952); thermal conductivity of lead below 1° K.

    Google Scholar 

  14. Mendelssohn, K., and C. A. Renton: Phil. Mag. 44, 776 (1953); thermal conductivity of Sn, In, Tl, Ta, Cb and Al below 1° K.

    Google Scholar 

  15. Mendelssohn K.: Physica, Haag 19, 775 (1953); review of Oxford work on thermal conductivity of superconductors; discussion.

    ADS  Google Scholar 

  16. Renton, C. A.: Phil. Mag. 46, 47 (1955); effect of magnetic fields and frozen-in flux on the thermal conductivity of superconductors.

    Google Scholar 

  17. Goodman, B. B.: Proc. Phys. Soc. Lond., Ser. A 66, 217 (1953); thermal conductivity of tin below 1° K.

    ADS  Google Scholar 

  18. Shoenberg, D.: Physica, Haag 19, 788 (1953); review of Cambridge work on the thermal conductivity of superconductors and size effect below 1° K.

    ADS  Google Scholar 

  19. Heer, C.V., and J. G. Daunt: Phys. Rev. 76, 854 (1949); thermal conductivity of Sn and Ta below 1° K.

    ADS  Google Scholar 

  20. Webber, R. T., and D. A. Spohr: Phys. Rev. 84, 384 (1951); thermal conductivity of lead in the intermediate state.

    ADS  Google Scholar 

  21. Webber, R. T., and D. A. Spohr: Phys. Rev. 91, 414 (1953); thermal conductivity of mercury in the intermediate state.

    ADS  Google Scholar 

  22. Detwiler, D. P., and H. A. Fairbank: Phys. Rev. 86, 574 (1952); 88, 1049 (1952); thermal conductivity of tin and indium in the intermediate state.

    ADS  Google Scholar 

  23. Hulm, J. K.: Phys. Rev. 90, 1116 (1953); thermal conductivity of mercury in the intermediate state.

    ADS  Google Scholar 

  24. Sladek, W. J.: Phys. Rev. 91, 1280 (1953); 97, 902 (1955); thermal conductivity of indium-thallium alloys, study of lattice conduction and of intermediate state.

    ADS  Google Scholar 

  25. Laredo, S. J., and A. B. Pippard: Proc. Camb. Phil. Soc. 51, 368 (1955); extra resi stivity in the intermediate state due to scattering of phonons.

    ADS  Google Scholar 

Download references

Authors

Editor information

S. Flügge

Rights and permissions

Reprints and permissions

Copyright information

© 1956 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klemens, P.G. (1956). Thermal Conductivity of Solids at Low Temperatures. In: Flügge, S. (eds) Low Temperature Physics I / Kältephysik I. Encyclopedia of Physics / Handbuch der Physik, vol 3 / 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-39773-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-39773-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-38851-8

  • Online ISBN: 978-3-662-39773-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics