Advertisement

Some Applications of the Method of “Internal Constrains” to Dynamic Problems

  • Enrico Volterra

Abstract

In the present paper a method of discussing the problem of vibrations of straight or curved bars in which the effects of shear and of rotatory inertia are taken into account will be presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Volterra, E.: Ing.-Arch. 23, 402 (1955).MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Volterra, E.: Ing.-Arch. 23, 410 (1955).MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Love, A. E. H.: The Mathematical Theory of Elasticity, 4. Ed., pp. 51–58. Cambridge 1934.Google Scholar
  4. [4]
    Davies, R. M.: Trans. Roy. Soc., Lond., Ser. A 240, 375 (1948).MATHGoogle Scholar
  5. [5]
    Lord Rayleigh: The Theory of Sound.Google Scholar
  6. [6]
    Morse, R. W.: J. Acoust. Soc. Amer. 20, 833 (1948).CrossRefGoogle Scholar
  7. [7]
    Morse, R. W.: J. Acoust. Soc. Amer. 22, 219 (1950).CrossRefGoogle Scholar
  8. [8]
    Kolsky, H.: Stress Waves in Solids. Oxford 1953.Google Scholar
  9. [9]
    Mindlin, R. D. and G. Herrmann: Proc. of the First Nat. Congr. Appl. Mech. Chicago 1951, p. 187.Google Scholar
  10. [10]
    Mindlin, R. D. and G. Herrmann: Proc. of the Second Nat. Congr. Appl. Mech. Ann Arbor 1954, p. 233.Google Scholar
  11. [11]
    Timoshenko, S. P.: Phil. Mag. 41, 744 (1921).CrossRefGoogle Scholar
  12. [12]
    Hudson, G. E.: Phys. Rev. 63, 46 (1943).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1956

Authors and Affiliations

  • Enrico Volterra
    • 1
  1. 1.TroyUSA

Personalised recommendations