Skip to main content
  • 181 Accesses

Abstract

The most important property of the cathode ray oscilloscope, and upon which most of its practical applications are based, is the ability of the instrument to display in a uniquely clear and accurate manner the changing values of a magnitude over a period of time. The examination of such records often provides much valuable information: for example, it may give a clue to the cause of the discrepancy if the shape of the trace differs from what had been expected (distortion).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Keller, H., Ein Kippgerät mit Synchronisation zur Zeitablenkung bei der Braunschen Röhre, Funktechnische Monatshefte, Oct. 1933 pp 412-414, 8 illustrations.

    Google Scholar 

  2. Richter, H., Elektrische Kippschwingungen, Leipzig: Verlag S. Hirzel 1940.

    Google Scholar 

  3. Puckle, O. S., Time Bases (Scanning Generators), London: Chapman & Hall Ltd., 2nd edn. 1952.

    Google Scholar 

  4. Jager, J., Comments on circuits for generation of time-base voltages, Philips’ Electronic Application Bulletin, Vol. X No. 1 (1948), pp 15–29, 25 illustrations.

    Google Scholar 

  5. Kinne, E., Kippgerät für Fernsehempfänger, Funk und Ton, Vol. 6 (1961) No. 8 pp 429–434, 11 illustrations.

    Google Scholar 

  6. Ein Kippspannungsgerät für Kathodenstrahloszillographen, Philips’ Technische Monatshefte No. 33 (1936) pp 45-50, 5 illustrations.

    Google Scholar 

  7. A versatile oscilloscope, Philips’ Electronic Application Bulletin, Vol. 17 (1956) No. 1 pp 1-10, 13 illustrations.

    Google Scholar 

  8. Aschen, R., a. Chambas, R., The transitron effect in H.F. pentode type EF 42, Philips’ Electronic Application Bulletin, Vol. X No. 10 (1949) pp 221–226, 13 illustrations.

    Google Scholar 

  9. Briggs, H. B., The miller-integrator, Electronic Engineering, Aug., Sept. and Oct. 1948 pp 243-247, 279-284 resp. 325-329, 17 illustrations.

    Google Scholar 

  10. Brunetti, C., The transitron oscillator, Proc. of the I.R.E., Vol. 27 (1939) No. 2, p. 88.

    Article  Google Scholar 

  11. Cocking, W. T., Linear saw-tooth oscillator, Wireless World, No. 6 (1946) p. 176.

    Google Scholar 

  12. Kerkhof, F., a. Werner, W., Television, vol I, Philips Technical Library, 1952, pp 154-185 (new edition in active preparation).

    Google Scholar 

  13. den Hartong, H., a. Muller, E. A., Oscilloscope time-base circuits, Wireless Engineer, Oct. 1947 pp 287-292, 8 illustrations.

    Google Scholar 

  14. Kuehn, R. L., Signal triggered sweep magnifies pulse widths, Electronics, April 1956 pp 146-147, 3 illustrations.

    Google Scholar 

  15. Fleming, L., Trigger adapter for transient oscillograms, Electronics, April 1955 pp 159-161, 2 illustrations.

    Google Scholar 

  16. Thackeray, D. P. C., Triggered microsecond sweep generators, Electronic Engineering, Sept. 1955 pp 317-401, 11 illustrations.

    Google Scholar 

  17. Rao, V. N., a. Sankarasubramanyan, V.: An expanded time-base using a millerintegrator, Electronic Engineering, June 1955 pp 273-274, 2 illustrations.

    Google Scholar 

  18. Bigalke, A., Die selbsttätige Aufnahme einmaliger Vorgänge mit dem Elektronenstrahl-Oszillographen, ETZ. V. 59 No. 15 (1938) pp 105–107, 6 illustrations.

    Google Scholar 

  19. Attree, V., A single sweep time-base, Electronic Engineering, May 1948 pp 160-161, 2 illustrations.

    Google Scholar 

  20. Pfeiffer, H., Die Erzeugung von Rechteckimpulsen mit Multivibratoren, Nachrichtentechnik, Vol. 6 No. 4 (1956) pp 166–170, 15 illustrations.

    Google Scholar 

  21. Renwick, W., a. Pfister, M. A., A design method for direct-coupled flip-flops, Electronic Engineering, June 1955 pp 246-250, 6 illustrations.

    Google Scholar 

  22. Armstrong, H. L., Bistabile circuits using triode-pentodes, Electronics, July 1956 pp 210, 212, 214 and 216, 3 illustrations.

    Google Scholar 

  23. Thiele, G., Berechnungsanleitung für Flip-Flop Schaltungen, Elektronische Rundschau, Vol. 11 (1957) Nos. 7, 8, 9. pp 212–215, 250-252 and 274-276, 15 illustrations.

    Google Scholar 

  24. Ferguson, A. E., Feedback in time-base circuits, Electronic Engineering, June 1952 pp 280-281, 2 illustrations.

    Google Scholar 

  25. Tucker, E. C., Delayed sweep and expanded sweeps. Principles of radar, New York, London: McGraw-Hill Book Comp. Inc. 2nd edn. 1946 pp 27 and 28 of section 3.

    Google Scholar 

  26. Farley, F. J. M., Elements of pulse circuits, London, Menthuen & Co. Ltd. 138 pages (Fig. 49, p 81). 74 illustrations.

    Google Scholar 

  27. Schmitt, O. H., Thermionic trigger, Journ. Sci. Instr. 1938 Vol. 15 p. 24, 2 illustrations.

    Article  ADS  Google Scholar 

  28. Elmore, W. C., a. Sands, M., Electronics. Experimental techniques, New York, London: McGraw-Hill Book Comp. Inc. 1947 Chap. 2: Trigger circuits. pp 76 and 100, 5 illustrations.

    Google Scholar 

  29. Buyer, E. M., Line selector checks television waveforms, Electronics, Sep. 1953 pp 153-155, 5 illustrations.

    Google Scholar 

  30. Fisher, J., Television picture line selector, Electronics, Mar. 1952, pp 140-143, 8 illustrations.

    Google Scholar 

  31. Macek, O., Ein Zeilenwähler mit Eigensynchronisierung für die Fernsehtechnik, Frequenz 10 (1956) No. 6 pp 193–197, 11 illustrations.

    Article  ADS  Google Scholar 

  32. Mothersole, P. L., A television line selector unit, Electronic Engineering, Dec. 1956 pp 520-523, 6 illustrations.

    Google Scholar 

  33. Czech, J., Besondere Zeitdehnungsverfahren bei Elektronenstrahl-Oszillographen, FTZ. No. 8 (1954) pp 425–430, 8 illustrations.

    Google Scholar 

  34. Dammers, B. G., A time-base generator for frequencies of 1 to 100 Mc/s., Philips Electronic Application Bulletin, Vol. X No. 7 (1949) pp 157–166, 8 illustrations.

    Google Scholar 

  35. Hardy, D. R., Jackson, B., a. Feinbery, R., The recording of high-speed single stroke electrical transients, Electronic Engineering, Jan. and Feb. 1956 pp 8-12 and 75-79, 1 illustration

    Google Scholar 

  36. Whiteway, F. E., The recording of high-speed single-shot phenomena, Proc. Inst. Electr. Eng. 107 (1960), 36, pp 614–623, 8 illustrations.

    Google Scholar 

  37. Janssen, J. M. L., An experimental “stroboscopic” oscilloscope for frequencies up to about 50 Mc/s, I. Fundamentals, Philips Techn. Rev. 12 (1950), 2, pp 52–59, 7 illustrations and Michels, A. J., II. Electrical build-up, 12 (1950), 3, pp 73-82, 12 illustrations.

    Google Scholar 

  38. Reevers, R. J. D., The Recording and Collocation of Waveforms, Electr. Engg., March 1959, pp 130-137, and April 1959, pp 204-212, 25 illustrations.

    Google Scholar 

  39. Queen, J. G., The Monitoring of High-Speed Waveforms, Electronic Engg., October 1952, pp 436-441, 10 illustrations.

    Google Scholar 

  40. Simple Stroboscopic Oscilloscope for Displaying Pulses with Short Rise Times and High Repetition Frequencies, Philips Electronic Application Bulletin, Vol. 19, Nr. 3, pp 115-120, 4 illustrations.

    Google Scholar 

  41. Louis, H. P., Messung von Signalen im Zeitbereich von Nanosekunden mittels Abtastoszillografen, Elektronische Rundschau Nr. 4/1960, pp 137–144, 9 illustrations.

    Google Scholar 

  42. Amodai, J. J., Converting Oscilloscopes For Fast Rise Time Sampling, Electronics, June 1960, pp 96-99, 5 illustrations.

    Google Scholar 

  43. Farber, A. S., Sampling Oscilloscope for Millimicrosecond Pulses at a 30-Mc Repetition Rate, The Rev. of Scientific Inst., 31, Nr. 1. January 1960, pp 15–17, 6 illustrations.

    Article  ADS  Google Scholar 

  44. Bushor, W. E., Sample Method Displays Millimicrosecond Pulses, Electronics, July 31, 1959, pp 69-71, 7 illustrations.

    Google Scholar 

  45. Carlson, R., Krakauer, S., Magleby, K., Monnier, R., van Duzer, V. and Woodbury, R., Sampling Oscillography, Hewlett-Packard-Application Note 36, Nov. 1959, 7 pages, 2 illustrations.

    Google Scholar 

  46. A Versatile New DC-500 MC Oscilloscope with High Sensitivity and Dual Channel Display, Hewlett-Packard Journal, Vol. 11, No. 5-7, Jan.–March 1960, 8 pages, 19 illustrations.

    Google Scholar 

  47. C. R. Abtastoszillograf für 500 MHz, Radio Mentor, September 1960, Nr. 9, pp 720-721, 2 illustrations.

    Google Scholar 

  48. Sugerman, R., Sampling Oscilloscope for Statistically Varying Pulses, The Rev. of Scientific Inst., 28, Nr. 11 (1957), pp 933–937, 10 illustrations.

    Article  ADS  Google Scholar 

  49. McAuslan, J. H. L., A dekatron C.R.O. time marker, Electronic Engineering, Dec. 1952 pp 567-568, 6 illustrations.

    Google Scholar 

  50. Steinberg, P., Gated time markers for C.R.O. display, Electronics, Mar. 1954 pp 150-151, 5 illustrations.

    Google Scholar 

  51. Gregson, M., Calibration bars for single sweep time-bases, Electronic Engineering, May 1952 pp 239-240, 3 illustrations.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1965 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Czech, J. (1965). Time Base Unit. In: Oscilloscope Measuring Technique. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-39653-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-39653-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-38761-0

  • Online ISBN: 978-3-662-39653-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics