Skip to main content
  • 188 Accesses

Abstract

An indirectly heated cathode is generally used as the electron source [1]. The electrons are emitted from an oxide coating on the tip of a small nickel cylinder sealed at one end. The coated tip is clearly shown in Fig. 2-1a as a white surface marked (k). The filament (f) or “heater” is reproduced in Fig. 2-1b, the cathode cylinder having been removed for this purpose. As can be seen, it is bent double. This is done to obtain maximum heating by the most economical means. To insulate it from the cathode, the filament is coated with a layer of kaolin. The filament can be heated by direct or alternating current.

First described by Prof. Braun in 1897 and called “Braun tube” after him. The term cathode ray tube is now usually employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. von Ardenne, M., Über eine indirekt geheizte Kathode für Braunsche Röhren, Fernsehen u. Tonfilm, Vol. 4 No. 6 (1953), pp 67–69, 6 illustrations.

    Google Scholar 

  2. Ittmann, G. P., Control of the beam intensity in cathode ray tubes, Philips Tech. Rev., Vol. 1 No. 3 (1936), pp 91–94, 6 illustrations.

    Google Scholar 

  3. Darbyshire, J. A., The electron gun of the cathode-ray tube. Electronic Engineering, December 1955, pp 523-528, 2 illustrations.

    Google Scholar 

  4. Theile, R., a. Weyres, Th., Grundlagen der Kathodenstrahlröhren, 2 Aufl. 1950, Berlin, Technischer Verlag Herbert Cram, 145 pp, 172 illustrations.

    Google Scholar 

  5. Say, M. G., Cathode-ray tubes. London, George Newnes Ltd., 1954, 213 pp, 120 illustrations.

    Google Scholar 

  6. Weinrib, E. A., a. Miljutin, W. I., Elektronenoptik, Berlin, VEB Verlag Technik 1964, 182 pp, 155 illustrations.

    Google Scholar 

  7. Feinberg, R., A high speed oscillograph cathode-ray tube for the direct recording of high current transients, Electronic Engineering, December 1956, pp 540-541, 6 illustrations.

    Google Scholar 

  8. Pieplow, H., Entwicklung und Aufgaben der Elektronenstrahl-Oszillografischen Messtechnik, Jahrbuch der AEG-Forschung, Vol. 8. December 1941, pp 161–174, 18 illustrations.

    Google Scholar 

  9. Pieplow, H., Messgenauigkeit und Messgrenzen technischer Elektronenstrahloszillographen, ATM. Vol. I, May 1949, No. 8340-5 and II Jan. 1950, No. 8340-6, 3 illustrations.

    Google Scholar 

  10. Gundert, E., Dimensionierung von Kathodenstrahlröhren. In: Elektronenröhren-Physik, Hrsg. von E. Rothe, München, Franzis-Verlag 1953, pp 70–79, 2 illustrations.

    Google Scholar 

  11. Boucke, H., Vervollkommnungen auf dem Gebiet der Elektrokardiographie, Funktechnische Monatshefte, 1937, Heft 10, p 319–323, 16 illustrations.

    Google Scholar 

  12. Die Philips Kathodenstrahlröhre DG 9–3. Eine Kathodenstrahlröhre mit Korrektur zur nicht-symmetrischen Ankopplung der Ablenkspannung an einem Plattenpaar. Philips Monatsheft für Apparatefabrikanten Nr. 52 (1937), pp 93-98, 10 illustrations.

    Google Scholar 

  13. Parker, P., The defects of electrostatic focussing and deflecting systems, Electronics, London, Edward Arnold & Co. 1950, pp 75–80, 5 illustrations.

    Google Scholar 

  14. Schwalgin, K., Eine Kathodenstrahlröhre für symmetrische und asymmetrische Ablenkung, Elektronik, Nr. 4 (1955), pp 82–84, 8 illustrations.

    Google Scholar 

  15. Gundert, E., Der Trapezfehler bei Oszillographenröhren, Telefunken-Zeitung, Vol. 28, No. 99 (1953) pp 89–94, 8 illustrations.

    Google Scholar 

  16. Schwalgin, K., Ablenksysteme von Oszillografenröhren für Messzwecke, Radio Mentor Vol. 3 (1957), pp 139–142, 16 illustrations.

    Google Scholar 

  17. Hollmann, H. E., Die Braunsche Röhre bei sehr hohen Frequenzen, Funktechnische Monatshefte, No. 3 (1932), pp 284–293, 8 illustrations.

    Google Scholar 

  18. Lewis, J. A., a. Wells, F. H., Millimicrosecond pulse techniques, Pergamon Press Ltd., London, 1954. p. 184.

    Google Scholar 

  19. Pierce, J. R., Travelling-wave oscilloscope, Electronics, November 1949, pp 97-99, 5 illustrations.

    Google Scholar 

  20. Germershausen, K. I., Goldberg, S., a. McDonald, D. F., A high-sensibility cathoderay tube for millimicrosecond transients, IRE Transactions on electron devices, April 1957, p. 152-158, 8 illustrations.

    Google Scholar 

  21. Garlick, G. F. J., The physics of cathode ray tube screens, Electronic Engineering, Aug. 1949, pp 287-291, 9 illustrations.

    Google Scholar 

  22. Rottgart, K. H. J., Elektronenstrahlanregung von Leuchtstoffen, Funk und Ton, Berlin-Borsigwalde, Verlag für Radio-Foto-Kinotechnik GmbH. Vol 7 (1953) No. 8, pp 385–397, 10 illustrations.

    Google Scholar 

  23. de Boer, F., a. Emmens, H., Sedimentation of fluorescent screens in cathode ray tubes, Philips Tech. Rev. Vol. 16 No. 8 (1955), pp 232–236, 5 illustrations.

    Google Scholar 

  24. Krögér, F. A., Application of luminescent substances, Philips Tech. Rev., Vol. 9 (1947) No. 7 pp 217–224, 4 illustrations.

    Google Scholar 

  25. Vérwey, E. J. W., a. Kröger, F. A., New views on oxidic semiconductors and zincsulphide phosphors. Philips Tech. Rev., Vol. 13 No. 4 (1951) pp 90–96, 3 illustrations.

    Google Scholar 

  26. Kröger, F. A., a. de Groot, W., The influence of temperature on the fluorescence, Philips Tech. Rev., Vol. 12 No. 1 pp 6–14, 10 illustrations.

    Google Scholar 

  27. Kröger, F. A., a. Bril, A., Saturation of fluorescence in television tubes, Philips Tech. Rev., Vol. 12 No. 4 pp 120–128, 7 illustrations.

    Google Scholar 

  28. Bril, A., a. Klasens, H. A., The efficiency of fluorescence in cathode-ray tubes, Philips Tech. Rev., Vol. 15 No. 2 (1953) pp 63–72, 10 illustrations.

    Google Scholar 

  29. Bornemann, I., a. Thurley, I., Die Bestimmung der Emissionsfarbe von Bildschirmen, Nachrichtentechnik, Vol. 6 No. 1 (1956) pp 23–26, 4 illustrations.

    Google Scholar 

  30. Dirbach, W., Zur Leuchtfarbe des Bildröhrenschirms, Telefunken-Zeitung, Vol. 29 No. 112 (1956) pp 105–108, 6 illustrations.

    Google Scholar 

  31. Veegens, J. D., A cathode ray oscillograph, Philips Tech. Rev. Vol. 4 No. 4 (1939) pp 198–204, 13 illustrations.

    Google Scholar 

  32. Custers, J. F. H., The recording of rapidly occurring electric phenomena with the aid of the cathode ray tube and the camera, Philips Tech. Rev., Vol. 2 No. 5 (1937) pp 148–155, 7 illustrations.

    Google Scholar 

  33. Blok, L., An apparatus for the measurement of scanning speeds of cathode ray tubes, Philips Tech. Rev., Vol. 3 No. 7 (1938), pp 216–219, 5 illustrations.

    Google Scholar 

  34. Czech, J., Kamera-Aufnahmen von Elektronenstrahloszillogrammen. Zeitschrift für angewandte Photographic Vol. III No. 5 pp 65–71, 9 illustrations.

    Google Scholar 

  35. de Gier, J., A cathode ray tube with post-acceleration, Philips Tech. Rev., Vol 5 Sept. 1940, pp 253–260, 14 illustrations.

    Google Scholar 

  36. White, W. G., Cathode-ray tubes with post-deflection acceleration, Electronic Engineering, March 1949, pp 75-79.

    Google Scholar 

  37. Allard, L. S., An “ideal” post deflexion accelerator C.R.T. Electronic Engineering, Nov. 1950, pp 461-463, 6 illustrations.

    Google Scholar 

  38. Schlesinger, K., Progress in the development of post-acceleration and electrostatic deflection, Proc. of the I.R.E., May 1956, pp 659-667, 13 illustrations.

    Google Scholar 

  39. Czech, J., Großprojektion von Oszillogrammen, Funk und Ton, Vol. 6, 1952, pp 363–368 and p. 492, 8 illustrations.

    Google Scholar 

  40. de Gier, J., a. van Rooy, A. P., Improvements in the constructions of cathode ray tubes, Philips Tech. Rev., Vol. 9 No. 6 (1947) pp 181–195, 6 illustrations.

    Google Scholar 

  41. Puckle, O. S., Time bases, Section Cross-talk, London: Chapman & Hall Ltd., p 241.

    Google Scholar 

  42. Die Bildgüte einer neuzeitlichen Oszillographenröhre, Telefunken-Zeitung, Vol. 29 No. 112, June 1956, pp 124-125, 4 illustrations.

    Google Scholar 

  43. Schwarz, E., Über Nachbeschleunigung bei Braunschen Röhren. Fernsehen und Tonfilm, Vol. 6 June 1935, pp 37–40 and July 1935, pp 47-49, 9 illustrations.

    Google Scholar 

  44. Rider, J. F., Encyclopaedia on cathode-ray oscilloscopes, New York, Publisher J. F. Rider Publisher Inc. 1950, Multigun Tubes, pp 72–75.

    Google Scholar 

  45. Bullock, T. M., Double-beam C-R tube in biological research. Electronics, July 1946, pp 103-105, 8 illustrations.

    Google Scholar 

  46. von Ferroni, E., Neuerungen auf dem Gebiet der Elektronenstrahl-Oszillographen. Enlarged special reprint from: Siemens-Zeitschrift, Vol. 25 No. 5 (1951), 20 illustrations.

    Google Scholar 

  47. Katz, H., a. Westendorf, E., Erreichung hoher Schreibgeschwindigkeiten mit einer ab geschmolzenen, rein elektrostatisch arbeitenden Braunschen Röhre, Zeitschrift für technische Physik, Vol. 20 No. 7 (1939) pp 209–212, 5 illustrat

    Google Scholar 

  48. von Borries, B., Die Kathodenstrahl-Oszillograph. Entwicklungsstand, Anwendung und Vergleich. VDI-Z., Vol. 80 (1936), No. 37, pp 1135–1141, 18 illustrations.

    Google Scholar 

  49. von Borries, B., a. Ruska, E., Über die Beurteilung und den objektiven Vergleich der Messleistung von Kathodenstrahloszillographen. Archiv für Elektrotechnik. Vol. XXXIV (1949) No. 3 pp 161–166, 3 illustrations.

    Google Scholar 

  50. Schwalgin, K., Kathodenstrahlröhren für Stosspannungsprüfung, Elektronische Rundschau, Vol. 9 No. 11 (1955), pp 396–397, 4 illustrations.

    Google Scholar 

  51. Buch, W., Die neue Stosspannungsanlage für die Untersuchung und Prüfung von Überspannungsschutzgeräten, Siemens-Zeitschrift, No. 7 (1955), pp 253–259, 12 illustrations.

    Google Scholar 

  52. von Borries, B., a. Ruska, E., Hochleistungsoszillographen mit ab geschmolzener Braunscher Röhre, Archiv für Elektrotechnik, Vol. XXXIV (1940) No. 2 pp 106–114, 12 illustrations.

    Article  Google Scholar 

  53. Rochelle, R. W., Cathode-ray-tube beam intensifier, Electronics, Oct. 1952 pp 151-153, 3 illustrations.

    Google Scholar 

  54. Wilson, W., Transient recorder, pp 61-63, 2 illustrations. Recurrent surge oscillograph. pp 70-75 and pp 124-142, 6 illustrations. From: The cathode ray oscillograph in industry, London: Chapman and Hall Ltd.

    Google Scholar 

  55. Herrnkind, O. P., Oszillographenröhren, Elektronik, No. 8 (1956) pp 213–218, 4 tables.

    Google Scholar 

  56. Soller, Th., Starr, M. A., a. Valley jr., G. E., Cathode ray tube displays. The dark-trace cathode-ray-tube screen and its development, New York, Toronto, London: McGraw-Hill Book Comp. Inc., p 664.

    Google Scholar 

  57. Rottgart, K. H. J., a. Bergtold, W., Bildröhren für Industrie-Fernsehen, Elektronische Rundschau, Vol. 10 (1956) No. 2 p 47–49, 8 illustrations.

    Google Scholar 

  58. Dietrich, W., Der Blauschreiber, ein neues Gerät zum Aufzeichnen nichtperiodischer Vorgänge, NTZ. No 11 (1956) pp 504–507, 3 illustrations.

    Google Scholar 

  59. Winkler, St., a. Nozik, S., Operation of CRT storage devices, Electronics, Oct. 1954 pp 185-187, 4 illustrations.

    Google Scholar 

  60. Nozik, S., Burton, N. H., a. Newman, S., Dark-trace display tube has high writing speed, Electronics Dec. 1954 pp 155-156, 5 illustrations.

    Google Scholar 

  61. Hubby, A. G., a. Watson, R. B., Scriptoscope shows messages on C-R tube, Electronics July 1952, pp 144-145, 2 illustrations0.

    Google Scholar 

  62. Knoll, M. a. Kazan, B., Storage tubes and their basic principles, John Wiley and Sons, Inc., New York, Chapman and Hall, Ltd., London. 1952, 143 pages, 34 illustrations.

    Google Scholar 

  63. Smith, S. T. a. Brown, H. E., Direct viewing memory tube, Proceedings of the I.R.E., Sept. 1953, pp 1167-1171, 4 illustrations.

    Google Scholar 

  64. Kates, J., A method for improving the read-around-ratio in cathode-ray storage tubes, Proceedings of the I.R.E., Aug. 1953, pp 1017-1023, 20 illustrations.

    Google Scholar 

  65. Winkler, St., a. Nozick, S., Operation of CRT storage devices, Electronics October 1954, pp 184-187, 4 illustrations.

    Google Scholar 

  66. Kramer, A. S., Cathode-ray storage tubes, Electronics 1959, January 23, pp 40-41.

    Google Scholar 

  67. Elektronenstrahl-Speicherröhren für direkte Beobachtung, Elektronik 1959, No. 11 pp 345-348, 4 tables.

    Google Scholar 

  68. Kramer, A. S., Cathode-ray storage tubes for special purposes. Electronics June 30, 1959.

    Google Scholar 

  69. Knoll, M. a. Harth, W., Niveauverschiebungsdiagramme zur Beschreibung der Ladungsprozesse in Speicherröhren, ETZ-A Vol. 78, No. 15, 1.8.1957, pp 543–548, 7 illustrations.

    Google Scholar 

  70. Jensen, A. S., Smith, J. P., Mesner, M. H. a. Flory, L. E., Barrier grid storage tube and its operation, RCA Review Vol. 9 (1948), pp 112–135, 19 illustrations.

    Google Scholar 

  71. Gibbons, D. J., The barrier grid storage tube, Electronic Engineering October 1961, pp 630-636, 10 illustrations.

    Google Scholar 

  72. Lehrer, N. H., Selective erasure and nonstorage writing in direct-view halftone storage tubes. Proc. of the Inst. of Radio Eg., Vol. 49 (1961) No. 3, pp 567–573, 9 illustrations.

    MathSciNet  Google Scholar 

  73. Cawkell, A. E. a. Reeves, R., Transient storage oscilloscope. Electronic Technology, February 1960, pp 50-59, 13 illustrations.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1965 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Czech, J. (1965). The Cathode Ray Tube. In: Oscilloscope Measuring Technique. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-39653-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-39653-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-38761-0

  • Online ISBN: 978-3-662-39653-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics