Advertisement

Soft Decision Detection Techniques

  • P. G. Farrell
Part of the International Centre for Mechanical Sciences book series (CISM)

Abstract

It is well known that an optimum method of detection (demodulation and decoding), for a data transmission system with channel (error-correction) coding, is coherent correlation detection (or matched filtering) of the sequence of signal elements corresponding to the block length, in the case of a block code, or to the decoder search length, in the case of a convolutional code (see fig. 1(a)). In practice, unless the block or search length (and therefore the constraint length) is very short, this ideal detector is too complex to realise, because of the difficulty of generating, storing and correlating the large number of analogue signal elements required. Thus most practical detectors consist of an analogue demodulator, possibly coherent, operating on individual signal elements, followed by a purely digital decoder operating on blocks of the digits produced by the “hard” decisions of the demodulator (see fig. 1(b)). However, some of the information which would be lost by only correlating over a signal element can be used to assist and improve the decoding process, and vice-versa. Additional information can be fed forward from the demodulator to improve operation of the decoder, or fed back from the decoder to improve operation of the demodulator (see fig. 1(c)).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baiser, M. & Silverman, R.A.: Coding for oonstant-data-rate systems, Part I: A new error-correcting code; Proc IRE, Vol 42, No 9 (Septenfaer, 1954), p 1428; Part II: Multiple-error-correcting codes; Proc IRE, Vol 43, No 6 (June. 1955), p 728.CrossRefGoogle Scholar
  2. 2.
    Batson, B.H., Moorehead, R.W. & Taqvi, S.Z.H.: Simulation results for the Viterbi decoding algorithm, NASA Report to TR R-396, 1972.Google Scholar
  3. 3.
    Blocm, F.J. et al: Improvement of binary transmission fay null-zone reception; Proc IRE, vol 45, p 963, 1957.CrossRefGoogle Scholar
  4. 4.
    Cahn, C.R.: Binary decoding extended to Nonbiliary demodulation of phase shift keying; IEE Trans, Vol CCM-17, No 5 (Oct.), p 583, 1969.CrossRefGoogle Scholar
  5. 5.
    Chase, D.: A class of algorithms for decoding block codes with channel measurement information; IEEE Trans, Vol IT-18, No 1 (Jan.), p 170, 1972.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chase, D.: A combined coding and modulation approach for communicaticn over dispersive channels; IEEE Trans, Vol CQM-21, No 3 (March), pp 159–174, 1973.CrossRefGoogle Scholar
  7. 7.
    Chase, D.: Digital signal design concepts for a tame-varying Rician Channel; IEEE Trans, Vol CQMH24, No 2 (Feb), pp 164–172, 1976.CrossRefzbMATHGoogle Scholar
  8. 8.
    Dorsch, B.: A decoding algorithm for binary block codes and J-ary output channels; IEEE Trans, Vol IT-20, No 3 (May), pp 391–394, 1974.zbMATHGoogle Scholar
  9. 9.
    Einarsson, G. & Sundberg, C.E.: A note on soft-decision decoding with successive erasures; IEEE Trans, Vol IT-22, No 1 (Jan.), p 88, 1976.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fano, R.M.: A Heuristic discussion of probabilistic decoding; IEEE Trans, Vol IT-9, pp 64–74, 1963.MathSciNetGoogle Scholar
  11. 11.
    Farrell, P.G.: Soft-decision minimum-distance decoding; Proc NATO ASI on Communications Systems and Random Process Theory, Darlington, England, Aug. 1977.Google Scholar
  12. 12.
    Farrell, P.G. & Munday, E.: Economical practical realisation of minimum-distance soft-decision decoding for data transmission; Proc. Zurich Int. Seminar on Digital Communications, March 1976, pp 135.1–6.Google Scholar
  13. 13.
    Farrell, P.G. & Munday, E.: Variable redundancy HF digital communications with adaptive soft-decision minimum-distanoe decoding; final report on MOD (ASWE) RES. Study Contract AT/2099/05/ASWE, 1978.Google Scholar
  14. 14.
    Forney, G.: Generalised minimum distance decoding; IEEE Trans, Vol IT-12, No 2 (April, 1966), pp 125–131, and in “Concatenated Codes”, MIT Res. Memo. No 37, 1966.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Fritchman, B.D., et al: Approximations to a joint detection/ decoding algorithm; IEEE Trans, Vol COM-25, No 2 (Feb), pp 271–278, 1977.CrossRefzbMATHGoogle Scholar
  16. 16.
    Goodman, R.M.F. & Green, A.D.: Microprocessor controlled soft-decision decoding of error-correcting block codes; Proc. 1ERE Conf. on Digital Processing of Signals in Communications, No 37, pp 37–349, Loughborough, England, 1977.Google Scholar
  17. 17.
    Goodman, R.M.F. & Ng, W.H.: Soft-decision threshold decoding of oonvolutional codes; Proc 1ERE Conf on Digital Processing of Signals in Communications, No 37, pp 535–546, Loughborcugh, England, 1977.Google Scholar
  18. 18.
    Haccoun, D. & Ferguson, M.J.: Generalised stack algorithms for decoding oonvolutional codes; IEEE Trans, Vol IT-21, No 6 (November), pp 638–651, 1977.Google Scholar
  19. 19.
    Harrison, C.N.: Application of soft decision techniques to block codes; Proc IERE Conf on Digital Processing of Signals in Communications, Loughborough, England, No 37, pp 331–336, 1977.Google Scholar
  20. 20.
    Hartmann, C.R.P. & Rudolph, L.D.: An optimum symbol-by-symbol decoding rule for linear codes; IEEE Trans, Vol IT-22, No 5 (Sept.), pp 514–517, 1976.MathSciNetzbMATHGoogle Scholar
  21. 21.
    Heller, R.M.: Forced-erasure decoding and the erasure reconstruction spectra of group codes; IEEE Trans. Vol COM-15, No 3 (June), p 390, 1967.CrossRefGoogle Scholar
  22. 22.
    Hobbs, CF.: Universality of blank-correction and error detection; IEEE Trans, Vol IT-13, No 2 (April), p 342, 1967.Google Scholar
  23. 23.
    Jayant, N.S.: An erasure scheme for atmospheric noise burst interference; Proc IEEE, Vol 54, No 12 (Dec.), p 1943, 1966.CrossRefGoogle Scholar
  24. 24.
    Jelinek, F.: A fast sequential decoding algorithm using a stack; IBM Jour. Res. Dev., Vol 13, Nov., pp 675–685, 1969.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Jordan, K.L.: The performance of sequential decoding in conjunction with efficient modulation; IEEE Trans, Vol CQM-14, No 3 (June) pp 283–297, 1966.CrossRefGoogle Scholar
  26. 26.
    Justesen, J.: A class of constructive asymptotically good algebraic codes, IEEE Trans, Vol IT-18, No 5 (Sept.), pp 652–56, 1972.MathSciNetzbMATHGoogle Scholar
  27. 27.
    Kalligeros, N.: Soft-Decision Error-Correction; M.Sc. Dissertation, university of Rent at Canterbury, England, 1977.Google Scholar
  28. 28.
    Kazakov, A.A.: A method of improving the noise immunity of redundant binary code reception; Telecoms (trans of Elec. & Radioteknika) Vol 22, No 3 (March), p 51, 1968MathSciNetGoogle Scholar
  29. 29.
    Lee, L.N.: On optimal soft-decision demodulation; IEEE Trans, Vol IT-22, No 4 (July), pp 437–444, 1976.MathSciNetzbMATHGoogle Scholar
  30. 30.
    Marquart, R.G.: The performance of foreced erasure decoding; IEEE Trans, CCM-15, No 2 (June), p 397, 1967.CrossRefGoogle Scholar
  31. 31.
    Massey, J.L.: Threshold Decoding; MIT Press, 1963.Google Scholar
  32. 32.
    Massey, J.L.: Coding and modulation in digital communications; Proc. Zurich Int. Seminar on Digital Communications, pp E2(l)-(4), 1974.Google Scholar
  33. 33.
    Ng, W.H. & Goodman, R.M.F.: An efficient minimum distance decoding algorithm for convolutional error-correcting codes, Proc. IEE, Vol 125, No 2, Feb. 1978, pp 97–103.Google Scholar
  34. 34.
    Pettit, R.H.: Use of the null-zone in voice comunications; IEEE Trans, Vol CQM-13, No 2 (June), p 175, 1965.CrossRefGoogle Scholar
  35. 35.
    Rappaport, S.S. & Kurz, L.: Optimal decision thresholds for digital signalling in non-Gaussian noise; IEEE Int. Conv. Rec, Part 2, p 198, 1965.Google Scholar
  36. 36.
    Reddy, S.M.: Further results on decoders for Q-ary output, IEEE Trans, Vol IT-20, No 4 (July), pp 552–4, 1974.zbMATHGoogle Scholar
  37. 37.
    Reddy, S.M. & Robinson, J.P.: Randan error and burst correction by iterated codes; IEEE Trans, Vol IT-18, No 1 (Jan), pp 182–191, 1972.MathSciNetzbMATHGoogle Scholar
  38. 38.
    Schwartz, L.S.: Some recent developments in digital feedback systems; IRE Trans, Vol CS-9, No 1 (March), pp 51–7, 1961.Google Scholar
  39. 39.
    Smith, J.S.: Error control in duobinary data systems by means of null-zone detection; IEEE Trans, Vol CCM-16, No 6 (Dec.), p 825, 1968.CrossRefGoogle Scholar
  40. 40.
    Sullivan, N.J. & Heaton, A.G.: Transient frequency response of transmittance peaked I.F. filters with application to null-zone detection; Eleo. Letters, Vol 5, No 18, p 423, 4th Sept, 1969.CrossRefGoogle Scholar
  41. 41.
    Sundberg, C.E.: Soft-decision error-detection for binary antipodal signals on the Gaussian channel; Dept. Telecom. Th., Lund. Univ., Sweden, Tech. Rep. TR-65, 1974.Google Scholar
  42. 42.
    Sundberg, C.E.: Reliability numbers matching binary symbols for Gray-coded MPSK and MDPSK signals; as above, TR-66, 1975.Google Scholar
  43. 43.
    Sundberg, C.E.: One-step majority logic decoding with symbol reliability information; IEEE Trans, IT-21, pp 235–242, No 2 (March), 1975.MathSciNetGoogle Scholar
  44. 44.
    Sundberg, C.E.: A class of soft-decision error detectors for the Gaussian channel; IEEE Trans, Vol CCM-24, No 1 (Jan), pp 106–112, 1976.MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Sundberg, C.E.: Asynptotically optimum soft-decision decoding algorithms for Hanming codes; Eleo. Letters, Vol 13, No 2, p 38, 20th Jan, 1977.MathSciNetCrossRefGoogle Scholar
  46. 46.
    C.C.I.T.T.: Control of errors for data transmission on switched telephone connections. “Blue Book” (Supplement No. 66), 1964.Google Scholar
  47. 47.
    Thiede, E.C.: Decision hysteresis reduces digital Pe; IEEE Trans, Vol CCM-20, No 5 (Oct) p 1038, 1972.CrossRefGoogle Scholar
  48. 48.
    Viterbi, A.J.: Error Bounds for convolutional codes and an asynptotically optimum decoding algorithm; IEEE Trans, Vol IT-13, No 2 (April), pp 260–269, 1967.zbMATHGoogle Scholar
  49. 49.
    Wainberg, S. & Wolf, J.K.: Burst decoding of binary block codes on Q-ary output channels; IEEE Trans, Vol IT-18, No 5 (Sept), p 684, 1972.MathSciNetzbMATHGoogle Scholar
  50. 50.
    Weldon, E.J.: Decoding binary block codes on Q-ary output channels; IEEE Trans, Vol IT-17, No 6 (Nov.), pp 713–718, 1971MathSciNetzbMATHGoogle Scholar
  51. 51.
    White, H.E.: Failure-correcticn decoding; IEEE Trans, Vol CQM-15, No 1 (Feb.), p 23, 1967.CrossRefGoogle Scholar
  52. 52.
    Wolf, J.K.: Efficient maximum-likelihood decoding of linear block codes using a trellis; IEEE Trans, Vol IT-24, No 1 (Jan), pp 76–80, 1977.Google Scholar
  53. 53.
    Wbzencraft, J.M.: Sequential decoding for reliable communication; IRE Nat. Conv. Rec., Part II, pp 11–25, 1957.Google Scholar
  54. 54.
    Wozencraft, J.M. & Kennedy, R.S.: Modulation and danrodulation for probabilistic coding; IEEE Trans, Vol IT-12, No 4 (July), pp 291–297, 1966.Google Scholar

Copyright information

© Springer-Verlag Wien 1979

Authors and Affiliations

  • P. G. Farrell
    • 1
  1. 1.Electronics LaboratoriesThe UniversityCanterbury, KentEngland

Personalised recommendations