Advertisement

The Bounds of Delsarte and Lovász, and Their Applications to Coding Theory

  • Robert J. McEliece
Part of the International Centre for Mechanical Sciences book series (CISM)

Abstract

Our object in this article is to introduce the reader to two important topics in coding theory, and to a recently developed mathematical tool that can be used to derive some extremely important results about them.

Keywords

Regular Graph Incidence Matrix Association Scheme Code Theory Adjacency Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MacWilliams, F. J., and Sloane, N. J. A., The Theory of Error-Correcting Codes (2 vols.), North-Holland, Amsterdam, 1977.zbMATHGoogle Scholar
  2. 2.
    Gass, S. I., Linear Programming, McGraw-Hill, New York, 1958.zbMATHGoogle Scholar
  3. 3.
    Best, M. R.; Brown, A. E.; MacWilliams, F. J.; Odlyzko, A.M.; and Sloane, N. J. A., Bounds for binary codes of length less than 25, IEEE Trans. Inform. Theory IT-24, 81, 1978.CrossRefzbMATHGoogle Scholar
  4. 4.
    Berlekamp, E. R., ed., Key Papers in the Development of Coding Theory, IEEE Press, New York, 1974.zbMATHGoogle Scholar
  5. 5.
    Sidelnikov, V. M., Upper bounds on the cardinality of a code with a given minimum distance, (in Russian) Problemy Peredachi Informatsii, 10, 43, 1974. (English translation appears in Information and Control, 28, 292, 1975.)MathSciNetGoogle Scholar
  6. 6.
    Levenshtein, V. I., On the minimal redundancy of binary error-correcting codes (in Russian), Problemy Peredachi Informatsii, 10, 26, 1974. (English translation appears in Information and Control, 28, 268, 1975.Google Scholar
  7. 7.
    McEliece, R. J., Rodemich, E. R., Rumsey, H. C., Welch, L. R., New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities, IEEE Trans. Inform. Theory IT-23, 157, 1977.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Shannon C., The zero error capacity of a noisy channel, IRE Trans. Inform. Theory IT-2, 8, 1956.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lovasz, L., On the Shannon capacity of a graph, IEEE Trans. Inform. Theory, IT-24, 1978, in press. Google Scholar
  10. 10.
    McEliece, R. J. Rodemich, E. R., Rumsey, H. C., The Lovász bound and some generalizations, J. Combinatorics, Information, and System Science, 3, 1978, 134.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Birkhoff, G., and MacLane, S., A Survey of Modern Algebra (2nd ed.), MacMillian, New York, 1960, chapters 8 and 9.Google Scholar
  12. 12.
    MacDuffee, C., The Theory of Matrices, Chelsea, New York, 1956, Section VII.Google Scholar
  13. 13.
    Wielandt, H., Finite Permutation Groups, Academic Press, New York, 1964, chapter 5.zbMATHGoogle Scholar
  14. 14.
    Hoffman, K., and Kunze, R., Linear Algebra, Prentice-Hall, Englewood Cliffs, 1961, chapter 6.Google Scholar
  15. 15.
    Delsarte, P., An algebraic approach to the association schemes of coding theory, Philips Res. Reports., Supplement 1973, No. 10.zbMATHGoogle Scholar
  16. 16.
    Goethals, J.-M., Association schemes, this volume, pp. 243–283Google Scholar
  17. 17.
    Schriver, A., A comparison of the bounds of Delsarte and Lovász, IEEE Trans. Inform. Theory, IT-24, 1978, in press. Google Scholar
  18. 18.
    Baumert, L. D., et. al., A combinatorial packing problem, in Computers in Algebra and Number Theory, American Mathematical Society, Providence, 1971, p. 97.Google Scholar
  19. 19.
    Weyl, H., Algebraic Theory of Numbers (Annals of Math. Studies No. 1), Princeton University Press, Princeton, 1940, section 11.Google Scholar
  20. 20.
    Hickerson, D., private communication.Google Scholar
  21. 21.
    Haemers, W., On the problems of Lovasz concerning the Shannon capacity of a graph, IEEE Trans. Inform. Theory, IT-24, 1978, in press. Google Scholar
  22. 22.
    Dickson, L. E., Linear Groups, Dover Publications, New York, 1958, sec. 283.zbMATHGoogle Scholar
  23. 23.
    Marcus, M., and Mine, H., A. Survey of Matrix Theory and Matrix In-equalities, Allyn and Bacon, Boston, 1967, p. 28.Google Scholar
  24. 24.
    Szegö, G., Orthogonal Polynomials, American Math. Society, Providence, 1939.Google Scholar

Copyright information

© Springer-Verlag Wien 1979

Authors and Affiliations

  • Robert J. McEliece
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations