Skip to main content

The Bounds of Delsarte and Lovász, and Their Applications to Coding Theory

  • Chapter

Part of the book series: International Centre for Mechanical Sciences ((CISM))

Abstract

Our object in this article is to introduce the reader to two important topics in coding theory, and to a recently developed mathematical tool that can be used to derive some extremely important results about them.

Much of this manuscript was prepared while the author was employed by the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS7-100, sponsored by the National Aeronautics and Space Administration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MacWilliams, F. J., and Sloane, N. J. A., The Theory of Error-Correcting Codes (2 vols.), North-Holland, Amsterdam, 1977.

    MATH  Google Scholar 

  2. Gass, S. I., Linear Programming, McGraw-Hill, New York, 1958.

    MATH  Google Scholar 

  3. Best, M. R.; Brown, A. E.; MacWilliams, F. J.; Odlyzko, A.M.; and Sloane, N. J. A., Bounds for binary codes of length less than 25, IEEE Trans. Inform. Theory IT-24, 81, 1978.

    Article  MATH  Google Scholar 

  4. Berlekamp, E. R., ed., Key Papers in the Development of Coding Theory, IEEE Press, New York, 1974.

    MATH  Google Scholar 

  5. Sidelnikov, V. M., Upper bounds on the cardinality of a code with a given minimum distance, (in Russian) Problemy Peredachi Informatsii, 10, 43, 1974. (English translation appears in Information and Control, 28, 292, 1975.)

    MathSciNet  Google Scholar 

  6. Levenshtein, V. I., On the minimal redundancy of binary error-correcting codes (in Russian), Problemy Peredachi Informatsii, 10, 26, 1974. (English translation appears in Information and Control, 28, 268, 1975.

    Google Scholar 

  7. McEliece, R. J., Rodemich, E. R., Rumsey, H. C., Welch, L. R., New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities, IEEE Trans. Inform. Theory IT-23, 157, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  8. Shannon C., The zero error capacity of a noisy channel, IRE Trans. Inform. Theory IT-2, 8, 1956.

    Article  MathSciNet  Google Scholar 

  9. Lovasz, L., On the Shannon capacity of a graph, IEEE Trans. Inform. Theory, IT-24, 1978, in press.

    Google Scholar 

  10. McEliece, R. J. Rodemich, E. R., Rumsey, H. C., The Lovász bound and some generalizations, J. Combinatorics, Information, and System Science, 3, 1978, 134.

    MathSciNet  MATH  Google Scholar 

  11. Birkhoff, G., and MacLane, S., A Survey of Modern Algebra (2nd ed.), MacMillian, New York, 1960, chapters 8 and 9.

    Google Scholar 

  12. MacDuffee, C., The Theory of Matrices, Chelsea, New York, 1956, Section VII.

    Google Scholar 

  13. Wielandt, H., Finite Permutation Groups, Academic Press, New York, 1964, chapter 5.

    MATH  Google Scholar 

  14. Hoffman, K., and Kunze, R., Linear Algebra, Prentice-Hall, Englewood Cliffs, 1961, chapter 6.

    Google Scholar 

  15. Delsarte, P., An algebraic approach to the association schemes of coding theory, Philips Res. Reports., Supplement 1973, No. 10.

    MATH  Google Scholar 

  16. Goethals, J.-M., Association schemes, this volume, pp. 243–283

    Google Scholar 

  17. Schriver, A., A comparison of the bounds of Delsarte and Lovász, IEEE Trans. Inform. Theory, IT-24, 1978, in press.

    Google Scholar 

  18. Baumert, L. D., et. al., A combinatorial packing problem, in Computers in Algebra and Number Theory, American Mathematical Society, Providence, 1971, p. 97.

    Google Scholar 

  19. Weyl, H., Algebraic Theory of Numbers (Annals of Math. Studies No. 1), Princeton University Press, Princeton, 1940, section 11.

    Google Scholar 

  20. Hickerson, D., private communication.

    Google Scholar 

  21. Haemers, W., On the problems of Lovasz concerning the Shannon capacity of a graph, IEEE Trans. Inform. Theory, IT-24, 1978, in press.

    Google Scholar 

  22. Dickson, L. E., Linear Groups, Dover Publications, New York, 1958, sec. 283.

    MATH  Google Scholar 

  23. Marcus, M., and Mine, H., A. Survey of Matrix Theory and Matrix In-equalities, Allyn and Bacon, Boston, 1967, p. 28.

    Google Scholar 

  24. Szegö, G., Orthogonal Polynomials, American Math. Society, Providence, 1939.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Wien

About this chapter

Cite this chapter

McEliece, R.J. (1979). The Bounds of Delsarte and Lovász, and Their Applications to Coding Theory. In: Longo, G. (eds) Algebraic Coding Theory and Applications. International Centre for Mechanical Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-39641-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-39641-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-38752-8

  • Online ISBN: 978-3-662-39641-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics