Advertisement

Abstract

Radioactivity is the manifestation of an unstable (radioactive) nucleus going through a single or a series of internal readjustments (decays), more or less complex, leading eventually to a more stable configuration. The probability λ of this process occurring within a unit interval of time is characteristic of the nuclear species and it is independent of the length of time during which the radioactive nucleus has been in existence. The value of λ (decay constant) has been found to be independent of the chemical and physical status of the atom; this observation has been attributed to the fact that the energies involved in the latter, though sufficient to affect the extranuclear electrons, are usually too small to influence the course of events within the nucleus1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, K. A.: The standardization of electroncapture isotopes. Int. J. appl. Eadiat. 1, 289–298 (1957).Google Scholar
  2. Aglintsev, K. K., and V. P. Kasatkin: Dosimetry method for β-radiation based on investigations of the electron spectra in the fields of β-emitters. Atomnaya Energiya 7, 138–143 (1959).Google Scholar
  3. Altshuler, B., N. Nelson and M. Kuschner: Estimation of lung tissue dose from the inhalation of radon and daughters. Hlth Phys. 10, 1137–1161 (1964).Google Scholar
  4. Anderson, E.C.: Low level counting: from archeological artifacts to nuclear reactors. Estratto degli Atti del Congresso Scientifico-Sezione Nucleare, V. Eassegna Int. Electronica Nuclear, Koma, p. 279-306, 1958.Google Scholar
  5. Ardashnikov, S. N., and N. S. Chetverikov: Methods and apparatus — The dosimetry of ionizing radiations of finite range. Biofizika 3, 494–515 (1958).Google Scholar
  6. Berger, M. J., and S. M. Seltzer: Results of some recent transport calculations for electrons and Bremsstrahlung. National Bureau of Standards Report 8509, 1964.Google Scholar
  7. Bertinchamps, A. J., and G. C. Cotzias: Dosimetry of radioisotopes. Science 128, 988–990 (1958).PubMedGoogle Scholar
  8. Bush, F.: Energy absorption in radium therapy. Brit. J. Radiol. 19, 14–21 (1946).PubMedGoogle Scholar
  9. Bush, F.: The integral dose received from a uniformly distributed radioactive isotope. Brit. J. Radiol. 22, 96–105 (1949).PubMedGoogle Scholar
  10. Butler, J. W.: Automation of experimental science. J. Data Management 3, 32–39 (1965).Google Scholar
  11. Cameron, J. R., F. Daniels, N. Johnson and G. Kenney: Radiation dosimetry utilizing the thermoluminescence of lithium fluoride. Science 134, 333–334 (1961).PubMedGoogle Scholar
  12. Campion, P. J.: The standardization of radioisotopes by the beta-gamma coincidence method using high efficiency detectors. Int. J. appl. Radiat. 4, 232–248 (1959).Google Scholar
  13. Caro, L. G.: Considerations on high resolution autoradiography. J. roy. micr. Soc. 83, 127–133 (1964).PubMedGoogle Scholar
  14. Charlton, D. E., and D. V. Cormack: A method for calculating the alpha-ray dosage to soft tissue-filled cavities in bone. Brit. J. Radiol. 35, 473–477 (1962a).PubMedGoogle Scholar
  15. Charlton, D. E., and D. V. Cormack: Energy dissipation in finite cavities. Radiat. Res. 17, 34–49 (1962b).PubMedGoogle Scholar
  16. Chhabra, A. S.: 90Sr-90Y beta-ray (and Bremsstrahlung) depth-dose measurements in Lucite. Radiology 79, 1001–1007 (1962).PubMedGoogle Scholar
  17. Chhabra, A. S.: Effect of silver halide content on the film dosimetry of a 90Sr–90Y applicator. Argonne National Laboratory Radiological Physics Division Semiannual Report, ANL-6646, 68-75 (1963).Google Scholar
  18. Clark, R. K., S. S. Brar and L. D. Marinelli: Ionization of air by beta rays from point sources. Radiology 64, 94–103 (1955).PubMedGoogle Scholar
  19. Dousset, M., and J. Le Grand: Etude theorique de la dose delivrée à un tissu superficiellement contamine par un emetteur-α. Hlth Phys. 11, 171–178 (1965).Google Scholar
  20. Dudley, R. A.: Photographic film dosimetry. In: Radiation dosimetry, edit. Hine and Brownell, chapt. 7, p. 300–355. New York: Academic Press 1956.Google Scholar
  21. Dutreix, P.: Dosimetrie beta dans les applications interstitielles. J. de Radiol. 41, 731–745 (1960).Google Scholar
  22. Emery, E.W.: Personal communication, Sept. 1954. Quoted by Loevinger, Radiology 66 (1956).Google Scholar
  23. Erf, L. A.: Retention of radiophosphorus in whole and aliquot portions of tissues of patient dead of leukemia. Proc. Soc. exp. Biol. (N.Y.) 47, 287–289 (1941).Google Scholar
  24. Erf, L. A.: Clinical studies with the aid of radiophosphorus. II. The retention of radiophosphorus by tissues of patients dead of leukemia. Amer. J. med. Sci. 203, 529–535 (1942).Google Scholar
  25. Erf, L., and G. Friedlander: Phosphorus exchange in tissues of patients with lymphoid leukemia. Proc. Soc. exp. Biol. (N.Y.) 47, 134–136 (1941).Google Scholar
  26. Erf, L., and J.H. Lawrence: Phosphorus metabolism in neoplastic tissue. Proc. Soc. exp. Biol. (N.Y.) 46, 694–695 (1941).Google Scholar
  27. Evans, E. D.: Eadioactive-series decay. In: The Atomic nucleus, chapt. 15, p. 470–510. New York: McGraw-Hill (1955a).Google Scholar
  28. Evans, E. D.: Passage of heavy charged particles through matter. In: The Atomic nucleus, chapt. 22, p. 632–668. New York: McGraw-Hill (1955b).Google Scholar
  29. Failla, P., and G. Failla: Measurement of the dose in small tissue volumes surrounding “point” sources of radioisotopes. Radiat. Res. 13, 61–91 (1960).PubMedGoogle Scholar
  30. Forssberg, A.: A study of the distribution of radioactive phosphorus in three cases of cancer. Acta radiol. (Stockh.) 27, 88–92 (1946).Google Scholar
  31. Goodheart, C. R.: Radiation dose calculation in cells containing intra-nuclear tritium. Radiat. Res. 15, 767–773 (1961).PubMedGoogle Scholar
  32. Gunn, S. R.: Radiometric calorimetry: A review. Nucl. Instr. Methods 29, 1–24 (1964).Google Scholar
  33. Hale, J.: The use of interstitial radium dose rate tables for other radioactive isotopes. Amer. J. Roentgenol. 79, 49–53 (1958).PubMedGoogle Scholar
  34. Harper, P. V., and K. Lathrop: Implant radiation therapy for carcinoma of the pancreas. A.M.A. Arch. Surg. 77, 613–620 (1958).Google Scholar
  35. Harper, P. V., R. D. Moseley jr., W. A. Kelly, W. Fenge and W. de Vos: Experiences with yttrium90 hypophysectomy. Suppl. Strahlentherapie 38, 270–278 (1958).Google Scholar
  36. Hayes, F. N.: Liquid scintillators: Attributes and applications. Int. J. appl. Radiat. 1, 46–56 (1956).Google Scholar
  37. Hine, G. J.: Scattering of secondary electrons produced by gamma rays in materials of various atomic numbers. Physical. Rev. 82, 755–757 (1951).Google Scholar
  38. Hine, G. J.: Secondary electron emission and effective atomic numbers. Nucleonics 10 (1), 9–15 (1952).Google Scholar
  39. Hine, G. J., B. A. Burrows, L. Apt, M. Pollycove, J. F. Ross and L. A. Sarkes: Scintillation counting for multiple-tracer studies. Nucleonics 13 (2), 23–25 (1955).Google Scholar
  40. Hoecker, F. E., and P. G. Roofe: Studies of radium in human bone. Radiology 56, 89–98 (1951).PubMedGoogle Scholar
  41. Howarth, J. L.: Calculation of the absorbed dose in soft-tissue cavities in bone irradiated by X-rays. Radiat. Res. 24, 158–183 (1965a).PubMedGoogle Scholar
  42. Howarth, J. L.: Calculation of the alpha-ray absorbed dose to soft tissue cavities in bone. Brit. J. Radiol. 38, 51–56 (1965b).PubMedGoogle Scholar
  43. International Atomic Energy Agency: Medical radioisotope scanning. Vienna: IAEA 1959.Google Scholar
  44. International Atomic Energy Agency: Metrology of radionuclides. Vienna: IAEA 1960.Google Scholar
  45. International Atomic Energy Agency: Whole-body counting. Vienna: IAEA 1962.Google Scholar
  46. International Atomic Energy Agency: Assessment of radioactivity in man. Vienna: IAEA 1964.Google Scholar
  47. International Commission on Radiological Protection, and International Commission on Radiological Units and Measurements: Report of the RBE committee to the ICRP and ICRU. Hlth Phys. 9, 357–386 (1963).Google Scholar
  48. International Commission on Radiological Units and Measurements (ICRU): National Bureau of Standards Handbook, 18, 1961.Google Scholar
  49. International Commission on Eadiological Units and Measurements: Report 10a, Radiation quantities and units. National Bureau of Standards, Handbook 84, 1962.Google Scholar
  50. International Commission on Eadiological Units and Measurements: Radioactivity. National Bureau of Standards, Handbook 86, 1963.Google Scholar
  51. International Committee on Radiological Protection: Report of Committee II on permissible dose for internal radiation (1959) with bibliography for biological, mathematical and physical data. Health Physics 3, 1–380 (1960).Google Scholar
  52. Jacobi, W.: The dose to the human respiratory tract by inhalation of short-lived 222Rn-and 220Rn-decay products. Hlth Phys. 10, 1163–1174 (1964).Google Scholar
  53. Johns, H. E., and J. S. Laughlin: Interaction of radiation with matter. In: Radiation dosimetry, edit. Hine and Brownell, chapt. 2, p. 116–117 and 121. New York: Academic Press 1956.Google Scholar
  54. Kellershohn, C.: Sulla possibilita d’utilizare le radiazioni di frenaggio (Bremsstrahlung) per la rivelazione esterna del radiofosforo 32P fissato nei tessuti. Minerva nucleare (Torino) 1, 130–135 (1957).Google Scholar
  55. Kellershohn, C., B. Herzberg et J. Martin: Possibilité et interêt de la détection externe par Bremsstrahlung de radiophosphore 32P dans l’organisme. Strahlentherapie 38, 331–347 (1958).Google Scholar
  56. Kenny, J. M., L. D. Marinelli and H. Q. Woodard: Tracer studies with radioactive phosphorus in malignant neoplastic disease. Radiology 37, 683–687 (1941).Google Scholar
  57. Kononenko, A. M.: Calculation of the intensity of the alpha-radiation dose arising from a radioactive substance distributed inside the organism. Biophysics 2, 98–117 (1957).Google Scholar
  58. Kononenko, A. M.: Taking consideration of the inhomogeneity of to specific energy loss in calculating the average dose of alpha-radiation. Radiobiologiia 3, 915–919 (1963).PubMedGoogle Scholar
  59. Kononenko, A. M., and V. A. Petrov: Method and Apparatus — Certain aspects of the dosimetry of distributed sources of β-radiation. Biofizika 5, 217–224 (1960).PubMedGoogle Scholar
  60. Kraushaar, J. J., E. D. Wilson and K. T. Bainbridge: Comparison of the values of the disintegration constant of 7Be in Be, BeO, and BeF. Physical. Rev. 90, 610–614 (1953).Google Scholar
  61. Lamerton, L. F., and E. B. Harriss: Resolution and sensitivity considerations in autoradiography. J. Photographic Sci. 2, 135–144 (1954).Google Scholar
  62. Lawrence, J. H., K. G. Scott and L. W. Tuttle: Studies on leukemia with the aid of radioactive phosphorus, p. 33–58. In New Internat. Clinics III, Ser. 2. New York: J. B. Lippincott 1939.Google Scholar
  63. Liden, K.: The determination of 90Sr and other γ-emitters in human beings from external measurements of the Bremsstrahlung, 2nd U.N. Int. Conf. on the Peaceful Uses of Atomic Energy, Geneva 1958, A/Conf. 15/P171, Sweden.Google Scholar
  64. Loevinger, R.: Distribution of absorbed energy around a point source of ß-particles. Science 112, 530–531 (1950).PubMedGoogle Scholar
  65. Loevinger, E.: The dosimetry of beta radiations. Eadiology 62, 74–82 (1954).Google Scholar
  66. Loevinger, E.: The dosimetry of beta sources in tissue. The point function. Eadiology 66, 55–62 (1956).Google Scholar
  67. Loevinger, E.: Average energy of allowed beta-particle spectra. Phys. in Med. Biol. 1, 330–339 (1957).Google Scholar
  68. Loevinger, E., and S. Feitelberg: Using Bremsstrahlung detection by a scintillator for simplified beta counting. Nucleonics 13 (4), 42–45 (1955).Google Scholar
  69. Loevinger, E., J. G. Holt and G. J. Hine: Internally administered radioisotopes. In: Eadiation dosimetry, edit. Hine and Brownell, chapt.17 p. 803–873. New York: Academic Press 1956.Google Scholar
  70. Loevinger, E., E. M. Japha and G. L. Brownell: Discrete radioisotope sources. In: Eadiation dosimetry, edit. Hine and Brownell, chapt. 16, p. 693–799. New York: Academic Press 1956.Google Scholar
  71. Low-Beer, B.V. A.: Estimation of dosage for intravenously administered 32P calculation based on two compartment distribution of the isotope. Amer. J. Eoentgenol. 67, 28–41 (1952).Google Scholar
  72. Marinelli, L. D.: Dosage determination with radioactive isotopes. Amer. J. Eoentgenol. 47, 210–216 (1942).Google Scholar
  73. Marinelli, L. D.: Eadiation dosimetry of internally administered beta-ray emitters-status and prospects. Eadiology 63, 656–661 (1954).Google Scholar
  74. Marinelli, L. D., and B. Goldschmidt: Concentration of P32 in some superficial tissues of living patients. Eadiology 39, 454–463 (1942).Google Scholar
  75. Marinelli, L. D., and E. F. Hill: Eadiation dosimetry in the treatment of functional thyroid carcinoma with 131I. Eadiology 55, 494–502 (1950).Google Scholar
  76. Marinelli, L. D., E. H. Quimby and G. J. Hine: Dosage determination with radioactive isotopes. II. Practical considerations in therapy and protection. Amer. J. Eoentgenol. 59, 260–281 (1948).Google Scholar
  77. Marinelli, L. D., J. B. Trunnell, E. F. Hill and F. W. Foote: Factors involved in the experimental therapy of metastatic thyroid carcinoma with I131. A preliminary report. Eadiology 51, 553–557 (1948).Google Scholar
  78. Marshall, J. H.: How to figure shapes of betaray spectra. Nucleonics 13 (8), 34–38 (1955).Google Scholar
  79. Mayneord, W. V.: Energy absorption. Brit. J. Eadiol. 13, 235–247 (1940).Google Scholar
  80. Mayneord, W. V.: Some applications of nuclear physics to medicine. Brit. J. Eadiol. Suppl. 2 (1950).Google Scholar
  81. Mayneord, W. V.: The concept and estimation of integral absorbed dose. In: Quantities, units and measuring methods of ionizing radiation, p. 134–148. Milano: Ulrico Hoepli 1958.Google Scholar
  82. Mayneord, W. V., and W. K. Sinclair: The dosimetry of artificial radioactive isotopes. Advanc. biol. med. Phys. 3, 1–63 (1953).Google Scholar
  83. Mays, C. W.: Determination of localized alpha dose I with particular emphasis on plutonium. Univ. of Utah, Eadiobiology Eeport COO-217, 161-180 (1958).Google Scholar
  84. Mays, C. W.: Determination of localized dose II from alphaemitters buried in mineralized bone. Univ. of Utah, Eadiobiology Eeport COO-220, 200-206 (1960).Google Scholar
  85. Mays, C. W., and K. A. Sears: Determination of localized alpha dose III from surface and volume deposits of 239Pu, 228Th, and 226Ea. Univ. of Utah, Eadiobiology Eeport COO-226, 78-85 (1962).Google Scholar
  86. Mehl, H. G.: The distribution of a pure betaemitter in the human body. Problems and preliminary results of Bremsstrahlung measurements in vivo. In: Medical radioisotope scanning, p. 125–139. Vienna: IAEA 1959.Google Scholar
  87. Meyer, S., and E. Schweidler: Eadioaktivität. Berlin: B. G. Teubner 1927.Google Scholar
  88. Michel, W. S., G. L. Brownell and J. Mealey, jr.: Designing sensitive plastic well counters for beta rays. Nucleonics 14 (11), 96–100 (1956).Google Scholar
  89. Myant, N. B., B. D. Corbett, A. J. Honour and E. E. Pochin: Distribution of radioiodide in man. Clin. Sci. 9, 405–419 (1950).Google Scholar
  90. Myant, N. B., and E. E. Pochin: The metabolism of radiothyroxine in man. Clin. Sci. 9, 421–440 (1950).Google Scholar
  91. Naidu, E.: Etude des courbes d’ ionisation des rayons a. Ann. Phys. 1, 72–122 (1934).Google Scholar
  92. National Bureau of Standards: Tables for the analysis of beta spectra. Applied math. series 13, Wash. D. C. 1952.Google Scholar
  93. O’Brien, K., S. Samson, E. Sanna and J. E. McLaughlin: The application of “onegroup” transport theory to β-ray dosimetry. Nucl. Sci. Engng. 18, 90–96 (1964).Google Scholar
  94. Odeblad, E.: Approximate formulas describing transmission and absorption of beta rays. Acta radiol. (Stockh.) 43, 310–312 (1955).Google Scholar
  95. Odeblad, E.: Further approximate studies on beta ray absorption and transmission. Acta radiol. 48, 289–306 (1957).PubMedGoogle Scholar
  96. Odeblad, E., and E. Agren: Some further studies on betaray transmission. Acta radiol. (Stockh.) 51, 128–136 (1959).Google Scholar
  97. Osgood, E. E.: Treatment of the leukemias and polycythemia vera with radioactive phosphorus. In: Therapeutic use of artificial radioisotopes, chapt. 7, p. 102–127. New York: John Wiley & Sons 1956.Google Scholar
  98. Parmley, W. W., J. B. Jensen and C. W. Mays: Skeletal self-absorption of beta particle energy. In: Some aspects of internal irradiation, p. 437–453. New York: Pergamon Press 1962.Google Scholar
  99. Paterson, E., and H. M. Parker: A dosage system for γ-ray therapy. Brit. J. Eadiol. 7, 592–632 (1934).Google Scholar
  100. Paterson, E., and H. M. Parker: A dosage system for interstitial radium therapy. Brit. J. Eadiol. 11, 252–266, 313-340 (1938).Google Scholar
  101. Paterson, E., and H. M. Parker, and F. W. Spiers: A system of dosage for cylindrical distribution of radium. Brit. J. Eadiol. 9, 487–508 (1936).Google Scholar
  102. Perry, W. E.: Standardisierung der Eadioaktivität in National Physical Laboratory. Strahlentherapie 102, 370–378 (1957).PubMedGoogle Scholar
  103. Phillips, A.F., and E.D. Saunders: Autoradiography and radioactivity measurements with human neoplasms containing radiophosphorus. Acta radiol. (Stockh.) 48, 101–112 (1957).Google Scholar
  104. Pochin, E. E., D. M. Myant and B. D. Corbett: Leukaemia following radioiodine treatment of hyperthyroidism. Brit. J. Eadiol. 39, 31–35 (1956).Google Scholar
  105. Poddar, K. K.: Sensitivity of the photographic emulsions to beta spectra and its dependence on their average energy. Radiat. Res. 11, 498–508 (1959).PubMedGoogle Scholar
  106. Quimby, E.H.: Dosimetry of internally administered radioactive isotopes. In: A Manual of artificial radioisotope therapy, p. 46. New York: Academic Press 1951.Google Scholar
  107. Quimby, E.H.: Dosage calculations in radium therapy, chapt. 16, p. 339–372 in Physical foundations of radiology, 2nd edit. New York: P. B. Hoeber 1952.Google Scholar
  108. Quimby, E.H., L. D. Marinelli and J. V. Blady: Secondary filters in radium therapy. Amer. J. Roentgenol. 41, 804–816 (1939).Google Scholar
  109. Robertson, J. S., and W. L. Hughes: Intranuclear irradiation with tritium-labeled thymidine. In: Proceedings of the First National Biophysics Conference (eds. Quastler and Morowitz), p. 278–283. New Haven: Yale University Press 1959.Google Scholar
  110. Roesch, W. C.: Beta ray dose calculations, HW—51318 Rev. 1957.Google Scholar
  111. Rotblat, J., and G. Ward: Analysis of the radioactive content of tissues by α-track autoradiography. Physics. biol. Med. 1, 57–70 (1956).Google Scholar
  112. Rowland, R. E., and J. H. Marshall: Radium in human bone: The dose in microscopic volumes of bone. Radiat. Res. 11, 299–313 (1959).PubMedGoogle Scholar
  113. Schwebel, A., H. S. Isbell and J. V. Karabinos: A rapid method for the measurement of carbon 14 in formamide solution. Science 113, 465–466 (1951).PubMedGoogle Scholar
  114. Schwebel, A., H. S. Isbell, and J. D. Moyer: Determination of carbon-14 in solutions of 14C-labeled materials by means of a proportional counter. J. Res. nat. Bur. Stand. 53, 221–224 (1954).Google Scholar
  115. Seidlin, S. M., A. A. Yalow and E. Siegel: Blood radioiodine concentration and blood radiation dosage during 131I therapy for metastatic thyroid carcinoma. J. clin. Endocr. 12, 1197–1204 (1952).PubMedGoogle Scholar
  116. Seidlin, S. M., A. A. Yalow and E. Siegel: Blood radiation dose during radioiodine therapy of met astatic thyroid carcinoma. Radiology 63, 797–813 (1954).PubMedGoogle Scholar
  117. Seliger, H.H.: The applications of standards of radioactivity. Int. J. appl. Radiat. 1, 215–232 (1956).PubMedGoogle Scholar
  118. Seliger, H.H., and A. Schwebel: Standardization of betaemitting nuclides. Nucleonics 12 (7), 54–63 (1954).Google Scholar
  119. Sievert, R. M.: Die Intensitätsverteilung der primären γ-Strahlung in der Nähe medizinischer Radiumpräparate. Acta radiol. (Stockh.) 1, 89–128 (1921).Google Scholar
  120. Sievert, R. M.: Die γ-Strahlung-Intensität an der Oberfläche und in der nächsten Umgebung von Radiumnadeln. Acta radiol. (Stockh.) 11, 249–267 (1930).Google Scholar
  121. Sinclair, W. K.: Standardization of x-ray beams and radioactive isotopes. In: Radiation dosimetry, edit. Hine and Brownell, chapt. 11, p. 505–529. New York: Academic Press 1956.Google Scholar
  122. Sinclair, W. K., J. D. Abbatt, H. E. A. Farran, E. B. Harriss and L. F. Lamerton: A quantitative autoradiographic study of radioiodine distribution and dosage in human thyroid glands. Brit. J. Radiol. 29, 36–41 (1956).PubMedGoogle Scholar
  123. Sinclair, W. K., N. G. Trott, and E. H. Belcher: The measurement of radioactive samples for clinical use. Brit. J. Radiol. 22, 565–575 (1954).Google Scholar
  124. Slack, L., and Way, K,: Radiations from radioactive atoms in frequentuse USAEC (1959) Washington, DC.Google Scholar
  125. Sommermeyer, K.: Dosage measurement of the beta radiation of radioactive isotopes in homo genous substances. Z. Physik. 133, 201–208 (1952).Google Scholar
  126. Sommermeyer, K.: Die Dosimetrie der β-Strahlung radioaktiver Isotope in luftäquivalenten Substanzen. Strahlentherapie 95, 302–311 (1954).PubMedGoogle Scholar
  127. Sommermeyer, K., and H. Opitz: Die Dosimetrie der β-Strahlen in Strahlenschutz. Sonderdruck aus Atomkernenergie 10, 404–408 (1959).Google Scholar
  128. Sommermeyer, K., and K. H. Waechter: Die Absorptionskoeffizienten der β-Energie radioaktiver Isotope für luftäquivalente Substanzen. Z. angew. Physik 5, 242–248 (1953).Google Scholar
  129. Spencer, L. V.: Theory of electron penetration. Physical. Rev. 98, 1597–1615 (1955).Google Scholar
  130. Spencer, L. V.: Energy dissipation by fast electrons. Nat. Bur. Standards Monograph 1, Sept. 10, 1959.Google Scholar
  131. Spiers, F. W.: The influence of energy absorption and electron range on dosage in irradiated bone. Brit. J. Radiol. 22, 521–533 (1949).PubMedGoogle Scholar
  132. Spiers, F. W.: Dosage in irradiated soft tissue and bone. Brit. J. Radiol. 24, 365–369 (1951).PubMedGoogle Scholar
  133. Spiers, F. W.: Alpha-ray dosage in bone containing radium. Brit. J. Radiol. 26, 296–301 (1953).PubMedGoogle Scholar
  134. Tochilin, E., B.W. Shumway, and G. D. Kohler: Response of photographic emulsions to charged particles and neutrons. Radiat. Res. 4, 467–482 (1956).Google Scholar
  135. Trucco, E.: Self-absorption in spheres and cylinders of radioactive material. Bull. Math. Biophys. 26, 303–325 (1964).PubMedGoogle Scholar
  136. Trunnell, J. B., B. J. Duffy, J. T. Godwin, W. Peacock, L. Kirschner, and R. Hill: The distribution of radioactive iodine in human tissues: Necropsy study in nine patients. J. clin. Endocr. 10, 1007–1021 (1950).PubMedGoogle Scholar
  137. Weijer, D. L., H. E. Duggan and D. B. Scott: Total body radiation and radiation to the blood from radioactive phosphorus. J. Canad. Ass. Radiol. 13, 117–122 (1962).PubMedGoogle Scholar
  138. Whitehouse, W. J., and J.L. Putman: Detection and measurement of the separate particles. In: Radioactive isotopes, chapt. 5, p. 153–225. Oxford: Clarendon Press 1953.Google Scholar
  139. Wilson, C. W.: Radium therapy: Its physical aspects. London: Chapman & Hall 1945.Google Scholar
  140. Zirkle, R. E.: The radiobiological importance of the energy distribution along ionization tracks. J. cell. comp. Physiol. 16, 221–235 (1940).Google Scholar
  141. Zirkle, R. E.: The radiobiological importance of linear energy transfer. In: Radiation biology, vol.1, part I. New York: McGraw-Hill 1954.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1971

Authors and Affiliations

  • L. D. Marinelli

There are no affiliations available

Personalised recommendations