The development of treatment methods in radiotherapy was earlier mainly based on clinical observations of the positive and negative effects of treatments given to patients. For further improvement of these methods it was found to be of importance to try to find a correlation between this empirically collected experience and detailed knowledge about the radiation dose in organs and tissues of interest in the patient. It is therefore natural that radiotherapists, and later physicists, have given much effort to the clinical dosimetry. Any loose strength in these efforts is hardly to be expected in the nearest future. By using results from scientific experiments in radiobiology as a rational basis for successful clinical work the requirements for an adequate physical description of the absorption of radiation merely tends to increase rather than to decrease.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alderson, S. W.: The role of phantoms in radiology, Machlett-Alderson phantom systems. Machlett Cathode Press 23, 2–34 (1966).Google Scholar
  2. Alderson, S. W., Lanzl, L. H., Rollins, M., Spira, J.: An instrumented phantom system for analogue computation of treatment plans. Amer. J. Roentgenol. 87, 185–195 (1962).PubMedGoogle Scholar
  3. Bäckström, A., Joelsson, I.: Shielded intrauterine applicator for a remote afterloading technique in the treatment of carcinoma of the uterine cervix. Acta radiol. Ther. Phys. Biol. 10, 225–230 (1971).PubMedCrossRefGoogle Scholar
  4. Batho, H. F.: Lung corrections in cobalt 60 beam therapy. J. Can. ad. Ass. Radiol. 15, 79–83 (1964).Google Scholar
  5. Brit. J. Radiol. Suppl. 10: Depth dose tables for use in radiotherapy (1961).Google Scholar
  6. Burlin, T. E.: The evaluation of the dose to the thorax in rotational cobalt 60 therapy. Brit. J. Radiol. 30, 543–549 (1957).PubMedCrossRefGoogle Scholar
  7. Chevallier, A., Herdly, J.: Technique simple de détermination de doses intrathoraciques reçues par irradiation du cobalt 60 (cyclothérapie et champs fixes opposés). Ann. Radiol. 5, 435–446 (1962).PubMedGoogle Scholar
  8. Cohen, M.: Physical aspects of roentgen therapy using wedge filters. Acta radiol. (Stockh.) 52, 471–492 (1959).Google Scholar
  9. Cohen, M., Burns, J. E., Sear, R.: Physical aspects of cobalt 60 teletherapy using wedge filters. I. Physical investigations. II. Dosimetric considerations. Acta radiol. (Stockh.) 53, 401-413, 486–504 (1960).CrossRefGoogle Scholar
  10. Cunningham, J. R.: Clinical physics. Ontario Cancer Institute, Toronto, Canada (Annual Report) 1965.Google Scholar
  11. Cura, L. J. van: Application of digital computers in radiation dosimetry. Acta radiol. (Stockh.), Suppl. 255 (1966).Google Scholar
  12. Dahl, O., Jacobsson, F., Walstam, R.: Telegamma therapy of laryngeal carcinoma. Acta Union Intern, contre le cancer 20, 8, 1735–1737 (1964).Google Scholar
  13. Dahl, O., Vikterlöf, K. J.: Dose distributions in arc therapy in the 200 to 250 kV range. Acta radiol. (Stockh.), Suppl. 171 (1958).Google Scholar
  14. Dahl, O., Vikterlöf, K. J.: In: Hultberg, S., Dahl, O., Thoraeus, R., Vikterlöf, K. J., Walstam, R.: Kilocurie cobalt 60 therapy at the radiumhemmet. Acta radiol. (Stockh.), Suppl. 179 (1959).Google Scholar
  15. Dahl, O., Vikterlöf, K. J.: Attainment and value of precision in deep radiotherapy. Acta radiol. (Stockh.), Suppl. 189 (1960).Google Scholar
  16. Du Sault, L. A., Légaré, J.-M.: Dosage calculations for oblique beams of radiation. Radiology 80, 856–862 (1963).Google Scholar
  17. Dutreix, A., Dutreix, J.: Construction des isodoses pour les surfaces obliques et irrégulières. J. Radiol. Électrol. 43, 671–673 (1962).Google Scholar
  18. Dutreix, J., Dutreix, A., Tubiana, M.: Evaluation des doses tenant compte de l’hétérogénéité de l’organism en télécobaltthérapie. Radiobiol. Radiother. (Berl.) 1, 3–17 (1960).Google Scholar
  19. Ellis, F.: The relationship of biological effect to dose-time fractionation factors in radiotherapy. Current topics in radiation research, vol. IV, p. 358–397. Amsterdam: North Holland Publ. Comp. 1968.Google Scholar
  20. Ellis, F., Hall, E. J., Oliver, R.: A compensator for variations in tissue thickness for high energy beams. Brit. J. Radiol. 32, 421–422 (1959).PubMedCrossRefGoogle Scholar
  21. Ellis, F., Miller, H.: The use of wedge filters in deep X-ray therapy. Brit. J. Radiol. 17, 90–94 (1944).CrossRefGoogle Scholar
  22. Ellis, F., Oliver, R.: The specification of tumour dose. Brit. J. Radiol. 34, 258–260 (1961).PubMedCrossRefGoogle Scholar
  23. Fedoruk, S. O., Johns, H. E.: Transmission dose measurement for cobalt 60 radiation with special reference to rotation therapy. Brit. J. Radiol. 30, 190–195 (1957).PubMedCrossRefGoogle Scholar
  24. Fletcher, G. H., Braun, E. J., Moore, E. B., Roesenbeck, E. von: The design of a second cobalt 60 unit, based on the experience acquired with 1000 patients treated with the first unit. Amer. J. Roentgenol. 84, 761–770 (1960).PubMedGoogle Scholar
  25. Garret, J. H., Jones, D. E. A.: Dose distribution problems in megavoltage therapy. II. Obliquity problems in megavoltage therapy. Brit. J. Radiol. 35, 739–742 (1962).CrossRefGoogle Scholar
  26. Geijn, J. van de: Compensation for the effect of oblique incidence of cobalt 60 radiation beams in teletherapy. Brit. J. Radiol. 36, 56–62 (1963a).PubMedCrossRefGoogle Scholar
  27. Geijn, J. van de: Dose distribution in moving beam cobalt 60 teletherapy—a generalized calculation method. Brit. J. Radiol. 36, 879–885 (1963b).CrossRefGoogle Scholar
  28. Geijn, J. van de: The computation of two and three dimensional dose distributions in cobalt 60 teletherapy. Brit. J. Radiol. 38, 369–377 (1965).CrossRefGoogle Scholar
  29. Gregory, C.: Dosage distribution in rotational cobalt 60 therapy. Brit. J. Radiol. 30, 538–543 (1957).PubMedCrossRefGoogle Scholar
  30. Hall, E. J., Oliver, R.: The use of standard isodose distributions with high energy radiation beams. The accuracy of a compensator technique in correcting for body contours. Brit. J. Radiol. 34, 43–52 (1961).PubMedCrossRefGoogle Scholar
  31. Hall, E. J., Oliver, R.: The use of metal compensators to correct for tissue heterogeneity in radiotherapy with high energy beams. Brit. J. Radiol. 35, 852–855 (1962).PubMedCrossRefGoogle Scholar
  32. Halldén, H., Ragnhult, I., Roos, B.: Computer method for treatment planning in external radiotherapy. Acta radiol. Ther. Phys. Biol. 1, 407–416 (1963).PubMedCrossRefGoogle Scholar
  33. Heinzel, F., Wichmann, H.: Some remarks about localization and positioning technique in tele-cobalt-therapy. Medica mundi (Philips medical devisions) 9, 4 (1963).Google Scholar
  34. Hope, C. S., Laurie, J., Orr, J. S., Halnan, K. E.: Optimization of X-ray treatment planning by computer judgement. Phys. Med. Biol. 12, 531–542 (1967).PubMedCrossRefGoogle Scholar
  35. Hope, C. S., Orr, J. S.: Computer optimization of 4 MeV treatment planning. Phys. Med. Biol. 10, 365–373 (1965).CrossRefGoogle Scholar
  36. Horwarth, J. L., Pick, V. J.: The use of a new multi-field isodose contour plotter. Brit. J. Radiol. 33, 265–267 (1960).CrossRefGoogle Scholar
  37. Hultberg, S., Dahl, O., Thoraeus, R., Vikterlöf, K. J., Walstam, R.: Kilocurie cobalt 60 therapy at the radiumhemmet. Acta radiol. (Stockh.), Suppl. 179 (1959).Google Scholar
  38. IAEA: Single-field isodose charts for high-energy radiation. An international guide. Vienna: Technical reports series No 8 (1962).Google Scholar
  39. IAEA: Atlas of radiation dose distributions, vol. 1. Vienna 1965.Google Scholar
  40. IAEA: Atlas of radiation dose distributions, vol. 2. Vienna 1966.Google Scholar
  41. IAEA: Computer calculation of dose distributions in radiotherapy. Vienna: Technical reports series No 57 (1966).Google Scholar
  42. IAEA: Role of computers in radiotherapy. Vienna: Panel proceedings series (1968).Google Scholar
  43. ICRU: Clinical dosimetry. Recommendations of the International Commission on Radiological Units and Measurements. National Bureau of Standards, Handbook, No. 87, Washington D. C. 1963.Google Scholar
  44. Jacobsson, L., Knauer, I.: Correction factors for tumour dose in the chest cavity due to diminished absorption and scatter in lung tissue. Radiology 67, 863–876 (1956).Google Scholar
  45. Joelsson, I., Bäckström, A.: Dose rate measurements in bladder and rectum. Acta radiol. Ther. Phys. Biol. 8, 343–359 (1969).PubMedCrossRefGoogle Scholar
  46. Joelsson, I., Bäckström, A.: Applicators for remote afterloading technique for optimum pelvic dose distribution in carcinoma of the uterine cervix. Acta radiol. Ther. Phys. Biol. 9, 233–246 (1970).PubMedCrossRefGoogle Scholar
  47. Joelsson, I., Bäckström, A., Diehl, J., Lagergren, C.: Dose distribution from intracavitary radium and supplementary external irradiation with regard to topography of lymph nodes in carcinoma of the uterine cervix. Acta radiol. Ther. Phys. Biol. 9, 33–54 (1970).PubMedCrossRefGoogle Scholar
  48. Johansson, J. M., Lindskoug, B. Å. A., Nyström, C. E.: Pelvic dosimetry during radiotherapy of carcinoma of the cervix uteri. Acta radiol. Ther. Phys. Biol. 8, 360–372 (1969).PubMedCrossRefGoogle Scholar
  49. Johns, H. E., Cunningham, J. R.: The physics of radiology, third ed. Springfield Illinois: Charles C. Thomas 1969.Google Scholar
  50. Jones, D. E. A., Gregory, C., Birchall, I.: Dosage distribution in rotational cobalt 60 therapy. Brit. J. Radiol. 29, 196–201 (1956).PubMedCrossRefGoogle Scholar
  51. Kuttig, H.: Herdlokalisation und Bestrahlungsplanung. Die Supervolttherapie (ed. Becker und Schubert, S. 303–313. Stuttgart: G. Thieme 1961.Google Scholar
  52. Lanzl, L. H., Ahrens, T. J., Rozenfeld, M., Bess, L.: An automic patient-contour measuring apparatus. Amer. J. Roentgenol. 108, 162–171 (1970).PubMedCrossRefGoogle Scholar
  53. Lederman, M.: Technique of radiation treatment of orbital tumours. Brit. J. Radiol. 30, 469–476 (1957).PubMedCrossRefGoogle Scholar
  54. Légaré, J. M.: Exit surface dose. Correction factors. Radiology 82, 272–279 (1964).Google Scholar
  55. Lidén, K.: Depth dose measurement in esophagus in roentgen rotation therapy. Acta radiol. (Stockh.) 30, 64–68 (1948).CrossRefGoogle Scholar
  56. Loevinger, R., Spira, J.: Dosimetry of multiple radiation fields by superposition of photographic films. Amer. J. Roentgenol. 77, 869–872 (1957).PubMedGoogle Scholar
  57. Martin, J. H., Evans, E. A., Anderson, F. J.: Accuracy in radiotherapy. Radiology 75, 552–558 (1960).PubMedGoogle Scholar
  58. Massey, J. B.: Dose distribution problems in megavoltage therapy. I. The problem of air spaces. Brit. J. Radiol. 35, 736–738 (1962).PubMedCrossRefGoogle Scholar
  59. McDonald, J. C. F.: Simplified techniques in employment of a rotational cobalt 60 therapy unit. Amer. Roentgenol. 86, 730–736 (1961).Google Scholar
  60. McDonald, N. B. S.: The use of computers in radiology. Proceedings of a conference. U.S. Dept. of Comm. Clearinghouse (1968).Google Scholar
  61. Meredith, W. J. (editor): Radium dosage, The Manchester system, sec. ed. Edinburgh and London: E. and S. Livingstone Ltd. 1967.Google Scholar
  62. Nahon, J. R., Hawkes, J. B.: Energy distribution in the thorax during multiple field and rotational therapy. Amer. J. Roentgenol. 72, 819–826 (1954).PubMedGoogle Scholar
  63. Nordberg, U.-B.: Determination of tumour dose by transmission measurements in roentgen rotation treatment of the oesophagus. Acta radiol. Ther. Phys. Biol. 7, 401–416 (1968).PubMedCrossRefGoogle Scholar
  64. Paterson, R., Parker, H. M.: A dosage system for interstitial radium therapy. Brit. J. Radiol. 11, 252-266, 313–340 (1958).Google Scholar
  65. Pfalzner, P.: Precalculated dose distributions in cobalt 60 fixed field and rotation therapy. Acta radiol. (Stockh.) 58, 215–225 (1962).CrossRefGoogle Scholar
  66. Pfalzner, P., Malo Alvarez, S.: Intercomparisons of absorbed dose in cobalt 60 teletherapy using mailed LiF dosimeters. Acta radiol. Ther. Phys. Biol. 7, 379–388 (1968).PubMedCrossRefGoogle Scholar
  67. Pohlit, W.: Dosimetrie zur Betatrontherapie. Stuttgart: G. Thieme 1965.Google Scholar
  68. Proimos, B. S.: New accessories for precise teletherapy with cobalt 60 units. Radiology 81, 307–316 (1963).PubMedGoogle Scholar
  69. Quimby, E.H.: Physical factors in interstitial radium therapy. Amer. J. Roentgenol. 33, 306–316 (1935).Google Scholar
  70. Richter, J., Schirrmeister, D.: A procedure for the calculation of dose distributions with a digital computer. Strahlentherapie 123, 45–58 (1964).PubMedGoogle Scholar
  71. Richter, J., Schirrmeister, D.: The determination of isodose by means of computers. Radiobiol. Radiother. (Berl.) 6, 61–67 (1965).Google Scholar
  72. Richter, J., Schirrmeister, D.: Die Berücksichtigung von Gewebeinhomogenitäten bei der Ermittlung von Dosisverteilungen mit digitalen Rechenautomaten. Strahlentherapie 127, 550–559 (1965).PubMedGoogle Scholar
  73. Rosenow, U., Frischkorn, R.: Die heutigen methodischen und technischen Möglichkeiten einer optimalen Bestrahlungsplanung. Deutscher Röntgenkongreß 1967, Teil B. Sonderbd. Strahlentherapie 66, 248–261 (1967).Google Scholar
  74. Seldinger, S. I.: Catheter replacement of the needle in percutaneous artheriography. A new technique. Acta radiol. (Stockh.) 39, 368 (1953).CrossRefGoogle Scholar
  75. Setälä, K.: Automatic body-contouring unit for dose planning in radiotherapy. Acta radiol. Ther. Phys. Biol. 3, 269–280 (1965).CrossRefGoogle Scholar
  76. Sievert, R. M.: Die Intensitätsverteilung der primären y-Strahlung in der Nähe medizinischer Radiumpräparate. Acta radiol. (Stockh.) 1, 89–128 (1921).CrossRefGoogle Scholar
  77. Sievert, R. M.: Eine Methode zur Messung von Röntgen-, Radiumund Ultrastrahlung nebst einigen Untersuchungen über die Anwendbarkeit derselben in der Physik und der Medizin. Acta radiol. (Stockh.), Suppl. 14 (1932).Google Scholar
  78. Skaggs, L. S., Savic, S.: Use of an analog computer to calculate treatment dose for multiple fields. Radiology 80, 116–117 (1968).Google Scholar
  79. Smith, I. H.: Cobalt 60 teletherapy. New York-Evanston-London: Harper 1964.Google Scholar
  80. Sörensen, N. E.: A simple method for the construction of compensators for “missing tissue”. Phys. Med. Biol. 13, 113–115 (1968).PubMedCrossRefGoogle Scholar
  81. Spiers, F. W., Meredith, W. J.: Statement of dosage in megavoltage radiation therapy. Recommendations of the Faculty of Radiologists. Clin. Radiol. 13, 163–166 (1962).Google Scholar
  82. Sterling, T. D., Perry, T. D., Bahr, G. K.: A practical procedure for automatic radiation treatment planning. Brit. J. Radiol. 34, 726–733 (1961).PubMedCrossRefGoogle Scholar
  83. Sterling, T. D., Perry, T. D., Weinkam, J. J.: Automation of radiation treatment planning. II. Calculation of nonconvergent field dose distributions. Brit. J. Radiol. 36, 63–67 (1963a).PubMedCrossRefGoogle Scholar
  84. Sterling, T. D., Perry, T. D.: Automation of radiation treatment planning. III. A simplified system of digitising isodoses and direct print-out of dose distributions. Brit. J. Radiol. 36, 522–527 (1963b).PubMedCrossRefGoogle Scholar
  85. Strandqvist, M.: Studien über die kumulative Wirkung der Röntgenstrahlen bei Fraktionierung. Acta radiol. (Stockh.), Suppl. 55 (1944).Google Scholar
  86. Sundbom, L.: Method of dose planning on application of shielding filters in cobalt 60 teletherapy. Acta radiol. Ther. Phys. Biol. 3, 209–215 (1964a).Google Scholar
  87. Sundbom, L.: Individually designed filters in cobalt 60 teletherapy. Acta radiol. Ther. Phys. Biol. 2, 189–208 (1964b).PubMedCrossRefGoogle Scholar
  88. Sundbom, L.: Exit dose measurements in cobalt 60 teletherapy. Acta radiol. Ther. Phys. Biol. 3, 193–209 (1965a).CrossRefGoogle Scholar
  89. Sundbom, L.: Dose planning for irradiation of thorax with 60Co in fixed-beam teletherapy. Acta radiol. Ther. Phys. Biol. 3, 342–352 (1965b).PubMedCrossRefGoogle Scholar
  90. Sundbom, L., Åsard, P. E.: Tumour dose concept. Acta radiol. Ther. Phys. Biol. 3, 135–142 (1965).PubMedCrossRefGoogle Scholar
  91. Sundbom, L., Walstam, R.: Bestrahlungsplanung in der Strahlentherapie. Radiologe 4, 8, 256–262 (1964).Google Scholar
  92. Surmont, J., Lalanne, C.M.: A propos d’un dispositif de centrage et de repérage en radiothérapie. J. Radiol. Électrol. 38, 543–548 (1957).Google Scholar
  93. Takahashi, S.: Conformation radiotherapy. Rotation techniques as applied to radiography and radiotherapy of cancer. Acta radiol. (Stockh.), Suppl. 242 (1965).Google Scholar
  94. Takahashi, S.: An atlas of axial transversal tomography and its clinical application. Berlin-Heidelberg-New York: Springer 1969.CrossRefGoogle Scholar
  95. Takahashi, S., Kitabatake, T., Morita, K., Okajima, S., Iida, H.: Methoden zur besseren Anpassung der Dosisverteilung an tiefliegende Krankheitsherde bei Bewegungsbestrahlung. Strahlentherapie 115, 478–488 (1961).PubMedGoogle Scholar
  96. Taylor, G. R.: A wedge filter for cobalt 60 supplementation of carcinoma of the cervix uteri previously treated by radium. Acta radiol. Ther. Phys. Biol. 1, 253–256 (1963).PubMedCrossRefGoogle Scholar
  97. Tranter, F. W.: A wedge filter for use in treatment of carcinoma of the cervix uteri with 4 MV X-rays. Brit. J. Radiol. 32, 350–352 (1959).PubMedCrossRefGoogle Scholar
  98. Trump, J. G., Wright, K. A., Smedal, M. I., Selzman, F. A.: Synchronous field shaping and protection in 2-million-volt rotation therapy. Radiology 76, 275 (1961).PubMedGoogle Scholar
  99. Tsien, K. C.: The application of automatic computing machines to radiation treatment planning. Brit. J. Radiol. 28, 432–439 (1955).PubMedCrossRefGoogle Scholar
  100. Tsien, K. C.: A study of basic external radiation treatment techniques with the aid of automatic computing machines. Brit. J. Radiol. 81, 32–40 (1958).CrossRefGoogle Scholar
  101. Tsien, K. C., Cohen, M.: Isodose charts and tables for medium energy X-rays. London: Butterworths 1962.Google Scholar
  102. Tsien, K. C., Cunningham, J. R., Wright, D. J.: Effects of different parameters on dose distribution in cobalt 60 planar rotation. Acta radiol. Ther. Phys. Biol. 4, 129–154 (1966).PubMedCrossRefGoogle Scholar
  103. Vidberg, H., Schütz, J.: Tiefen-und Größenbestimmung von Organen, Tumoren und Fremdkörpern mittels p.a.-und a.p.-Röntgenaufnahmen. Strahlentherapie 134, 523–528 (1967).Google Scholar
  104. Vieten, H.: Verfahren zur Herstellung von Körperschichtaufnahmen in beliebig gestellten und beliebig gestalteten Schichten. Fortschr. Röntgenstr. 62, 322–325 (1940).Google Scholar
  105. Wachsmann, F., Adam, W. E.: Die Dosimetrie in der strahlentherapeutischen Praxis. Radiologe 4, 246–255 (1964).PubMedGoogle Scholar
  106. Wachsmann, F., Dimotsis, A.: Kurven und Tabellen für die Strahlentherapie. Stuttgart: S. Hirzel 1957.Google Scholar
  107. Wachsmann, F., Vieten, H.: Grundlagen der strahlentherapeutischen Methoden. In: Handbuch der Medizinischen Radiologie, Bd. XVI/1, S. 1–127. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  108. Walstam, R.: Auxiliary diaphragm for radioisotope teletherapy units. Acta radiol. (Stockh.) 58, 201–209 (1962).CrossRefGoogle Scholar
  109. Walstam, R. Studies on therapeutic short-distance and intracavitary gamma beam techniques. Acta radiol. Stockh., Suppl. 236 (1965).Google Scholar
  110. Wilks, R., Casebow, M. P.: Tissue compensation with lead for 60Co therapy. Brit. J. Radiol. 42, 452–456 (1969).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1971

Authors and Affiliations

  • L. Sundbom
  • R. Walstam

There are no affiliations available

Personalised recommendations