Analytische Näherung für elastische Wellen in anisotropen kubischen Kristallen

  • Walter Orth


It is shown that the frequencies ωα(k) and the polarisation vectors e α(k) (α = 1, 2,3) of the elastic waves in anisotropic cubic crystals can be described exactly as Taylor series in the parameter \( \delta = \frac{{{c_{{11}}} - {c_{{12}}} - 2{c_{{44}}}}}{{{c_{{12}}} + {c_{{44}}}}} \) for all wave number vectors k. As the expansion functions of these series include no elastic constants, δ is taken as the proper anisotropy parameter. The series are converging very fast for almost all substances and may be broken off after the third expansion term.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goens, E.: Ann. d. Phys. 29, 279 (1937)ADSCrossRefGoogle Scholar
  2. 2.
    Born, M., Karman, T.: Z. f. Phys. 14, 18 (1913)Google Scholar
  3. 3.
    Blackman, M.: Hdb. d. Phys. VII/1, 344 (1955)Google Scholar
  4. 4.
    Mason, W. P.: Physical Acoustics, Vol. III, B, 31 (1965)Google Scholar
  5. 5.
    Fedorow, A. F. J.: Theory of Elastic Waves in Crystals, S. 245. New York: Plenum Press 1968CrossRefGoogle Scholar
  6. 6.
    Landau, L. D., Lifschitz, E. M.: Elastizitätstheorie (Lehrbuch d. theor. Phys. Bd. VII), S. 188. Berlin: Akademie-Verlag 1966Google Scholar
  7. 7.
    Leibfried, G.: Hdb. d. Phys. VII/1, 119 (1955)Google Scholar
  8. 8.
    Hearmon, R. F. S.: Rev. mod. Phys. 18, 409 (1946)ADSCrossRefGoogle Scholar
  9. 9.
    Huntington, H. B.: Solid State Physics (London) 7, 274 (1958)Google Scholar
  10. 10.
    Dederichs, P. H., Leibfried, G.: Phys. Rev. 188, 1175 (1969)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    Nye, J. F.: Physical Properties of Crystals. Oxford: Clarendon Press 1957MATHGoogle Scholar
  12. 12.
    Golubew, W.: Ditferentialgl. im Komplexen, S. 30. Berlin: Deutscher Verlag der Wissenschaften 1958Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • Walter Orth
    • 1
  1. 1.Institut für Theoretische PhysikUniversität des SaarlandesSaarbrücken-DudweilerBundesrepublik Deutschland

Personalised recommendations