The Electrical Resistivity of Metals at High Temperatures. An Analysis for Alkali and Noble Metals

  • Göran Grimvall

Abstract

Experimental data for the electrical resistivity of K, Na, Cu, Ag and Au at high temperatures and constant volume have been analysed. In particular, corrections to the most simple theoretical model (often referred to as Ziman’s model) arising from lattice anharmonicity, Debye-Waller factors, multi-phonon scattering and terms beyond the Born approximation are discussed. The net effect of all these corrections amounts at most to some 10% decrease in the resistivity close to the melting point.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dugdale, J. S., Gugan, D.: Proc. Roy. Soc. 270 A, 186 (1962)ADSCrossRefGoogle Scholar
  2. 2.
    Laubitz, M. J.: Canad. J. Phys. 45, 3677 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    Laubitz, M. J.: Canad. J. Phys. 47, 2636 (1969)ADSGoogle Scholar
  4. 4.
    Sham, L. J., Ziman, J. M.: In: Solid state physics (Edited by Seitz, F., Thurnbull, D.). Vol. 2, p. 221. New York: Academic Press 1963Google Scholar
  5. 5.
    Greene, M. P., Kohn, W.: Phys. Rev. 137, A 513 (1965)ADSCrossRefGoogle Scholar
  6. 6.
    Baym, G.: Phys. Rev. 135, A 1691 (1964)ADSCrossRefGoogle Scholar
  7. 7.
    Ziman, J. M.:Electrons and phonons, p. 360. Oxford: Clarendon Press 1960MATHGoogle Scholar
  8. 8.
    Chester, G. V.: Rep. progr. Phys. 26, 411 (1963)ADSCrossRefGoogle Scholar
  9. 9.
    Rubio, J.: J. Phys. C 2, 288 (1969)ADSCrossRefGoogle Scholar
  10. 10.
    Ballantine, L.: J. Phys. C 3, L 16 (1970)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    Faber, T. E.: Introduction to the theory of liquid metals. Cambridge: University Press 1972Google Scholar
  12. 12.
    Faber, T. E.: In: The physics of metals 1. Electrons (Edited by Ziman, J, M.). p. 282. Cambridge: University Press 1969Google Scholar
  13. 13.
    Springer, B.: Phys. Rev. 136, A 115 (1964)ADSCrossRefGoogle Scholar
  14. 14.
    Greenwood, D. A.: Proc. Phys. Soc. 87, 775 (1966)ADSCrossRefGoogle Scholar
  15. 15.
    Ziman, J. M.: Adv. Phys. 16, 551 (1967)ADSCrossRefGoogle Scholar
  16. 16.
    Greenfield, A. J., Wiser, N.: Adv. Phys. 16, 591 (1967)ADSCrossRefGoogle Scholar
  17. 17.
    Adams, P. D., Ashcroft, N. W.: Adv. Phys. 16, 597 (1967)ADSCrossRefGoogle Scholar
  18. 18.
    Greenfield, A. J., Wiser, N.: Adv. Phys.16, 601 (1967)ADSCrossRefGoogle Scholar
  19. 19.
    Ashcroft, N. W., Schaich, W.: Phys. Rev. B 1, 1370 (1970)ADSCrossRefGoogle Scholar
  20. 20.
    Prange, R. E., Kadanoff, L. P.: Phys. Rev. 134, A 566 (1964)ADSCrossRefGoogle Scholar
  21. 21.
    Huebener, R. P.: Phys. Rev. 146, 502 (1966)ADSCrossRefGoogle Scholar
  22. 22.
    Bailyn, M.: Phys. Rev. 121, 1336 (1961)ADSCrossRefGoogle Scholar
  23. 23.
    Franzak, E., Bailyn, M.: Phys. Rev. 126, 2033 (1962)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    Maradudin, A. A., Fein, A. E.: Phys. Rev. 128, 2589 (1962)ADSCrossRefGoogle Scholar
  25. 25.
    Maradudin, A. A., Ambegaokar, V.: Phys. Rev. 135, A 1071 (1964)ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    Buyers, W. J. L., Cowley, R. A.: Phys. Rev.180, 755 (1969)ADSCrossRefGoogle Scholar
  27. 27.
    Koehler, T. R., Gillis, N. S., Wallace, D. C: Phys. Rev. B 1, 4521 (1970)ADSCrossRefGoogle Scholar
  28. 28.
    Gillis, N. S., Koehler, T. R.: Phys. Rev. B 3, 3568 (1971)ADSCrossRefGoogle Scholar
  29. 29.
    Cowley, R. A., Svensson, E. C., Buyers, W. J. L.: Phys. Rev. Letters 23, 525 (1969)ADSCrossRefGoogle Scholar
  30. 30.
    Huebener, R. P.: In: Lattice defects in quenched materials (Edited by Cotterill, R. M. J., Doyama, M., Jackson, J. J., Meshii, M.), p. 569, New York: Academic Press 1965Google Scholar
  31. 31.
    Kuhlmann-Wilsdorf, D.: Phys. Rev. 140, A 1599 (1965)ADSCrossRefGoogle Scholar
  32. 32.
    Bradshaw, F. J., Pearson, S.: Proc. Phys. Soc. B 69, 441 (1956)ADSCrossRefGoogle Scholar
  33. 33.
    Feder, R., Charbnau, H. P.: Phys. Rev. 149, 464 (1966)ADSCrossRefGoogle Scholar
  34. 34.
    Martin, D. L.: Phys. Rev. 139, A 150 (1965)ADSCrossRefGoogle Scholar
  35. 35.
    Barron, T. H. K.: In: Lattice Dynamics (Edited by Wallis, R. F.), p. 247. New York: Pergamon Press 1965CrossRefGoogle Scholar
  36. 36.
    Wallace, D. C.: Thermodynamics of crystals, p. 376. New York: John Wiley and Sons 1972Google Scholar
  37. 37.
    Kaveh, M., Wiser, N.: Phys. Rev. B 6, 3648 (1972)ADSCrossRefGoogle Scholar
  38. 38.
    Glyde, H. R., Taylor, R.: Phys. Rev. B 5, 1206 (1972)ADSCrossRefGoogle Scholar
  39. 39.
    Pearson, W. B.: Handbook of lattice spacings and structures of metals and alloys. Oxford: Pergamon Press 1967Google Scholar
  40. 40.
    Dugdale, J. S.: Science 134, 77 (1961)ADSCrossRefGoogle Scholar
  41. 41.
    Ambegaokar, V., Conway, J. M., Baym, G.: In: Lattice Dynamics (Edited by Wallis, R. F.), p. 261. New York: Pergamon Press 1965CrossRefGoogle Scholar
  42. 42.
    Schrieffer, J. R.: Theory of Superconductivity. New York: Benjamin 1964MATHGoogle Scholar
  43. 43.
    Mermin, M. D.: Phys. Rev. B 1, 2362 (1970)ADSCrossRefGoogle Scholar
  44. 44.
    Kittel, C: Introduction to solid state physics, p. 216. New York: John Wiley and Sons 1967Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • Göran Grimvall
    • 1
  1. 1.Institute of Theoretical Physics FackGöteborg 5Sweden

Personalised recommendations