Carbon-Carbon Bond-Forming Reactions of Compounds of Boron, Silicon, and Tin

  • Francis A. Carey
  • Richard J. Sundberg
Part of the Advanced Organic Chemistry book series (AOC, volume Pt. B)


In this chapter, we will discuss the use of boron, silicon, and tin compounds to form carbon-carbon bonds. These elements are at the boundary of the metals and nonmetals, with boron being the most and tin the least electronegative of the three. The neutral alkyl derivatives of boron have the formula R3B, whereas for silicon and tin they are R4Si and R4Sn, respectively. These compounds are relatively volatile, nonpolar substances that exist as discrete molecules and in which the carbon-metal bonds are largely covalent. The boranes are Lewis acids, whereas the silanes and stannanes are not, unless substituted by a leaving group. The synthetically important reactions of these compounds involve transfer of a carbon substituent with one (radical equivalent) or two (carbanion equivalent) electrons to a reactive carbon center. This chapter will emphasize the nonradical reactions. In contrast to the transition metals, which often undergo a change in oxidation level at the metal during the reaction, there is usually no oxidation level change for boron, silicon, and tin compounds. We have already discussed one important aspect of boron and tin chemistry in the transmetalation reactions involved in Pd-catalyzed cross-coupling reactions discussed in Section 8.2.3.


Lewis Acid Organotin Compound ORGANOSILICON Compound Stereoselective Synthesis Lewis Acid Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

Organoborane Compounds

  1. H. C. Brown, Organic Synthesis via Boranes, John Wiley & Sons, New York, 1975.Google Scholar
  2. E. Negishi and M. Idacavage, Org. React. 33:1 (1985).Google Scholar
  3. A. Pelter, K. Smith, and H. C. Brown, Borane Reagents, Academic Press, New York, 1988.Google Scholar
  4. A. Pelter, in Rearrangements in Ground and Excited States, Vol. 2, P. de Mayo, ed., Academic Press, New York, 1980, Chapter 8.Google Scholar
  5. B. M. Trost, ed., Stereodirected Synthesis with Organoboranes, Springer, Berlin, 1995.Google Scholar

Organosilicon Compounds

  1. T. H. Chan and I. Fleming, Synthesis 1979:761.Google Scholar
  2. E. W. Colvin, Silicon Reagents in Organic Synthesis, Academic Press, London, 1988.Google Scholar
  3. I. Fleming, J. Dunogues, and R. Smithers, Org. React. 37:57 (1989).Google Scholar
  4. W. Weber, Silicon Reagents for Organic Synthesis, Springer, Berlin, 1983.CrossRefGoogle Scholar

Organotin Compounds

  1. A. G. Davies, Organotin Chemistry, VCH, Weinheim, 1997.Google Scholar
  2. S. Patai, ed., The Chemistry of Organic Germanium, Tin and Lead Compounds, Wiley-Interscience, New York, 1995.Google Scholar
  3. M. Pereyre, J.-P. Quintard, and A. Rahm, Tin in Organic Synthesis, Butterworths, London, 1983.Google Scholar

Chapter 9

  1. 1a.
    P. Jacob III and H. C. Brown, J. Am. Chem. Soc. 98:7832 (1976).CrossRefGoogle Scholar
  2. 1b.
    D. Milstein and J. K. Stille, J. Org. Chem. 44:1613 (1979).CrossRefGoogle Scholar
  3. 1c.
    H. C. Brown and K. K. Wang, J. Org. Chem. 51:4514 (1986).CrossRefGoogle Scholar
  4. 1d.
    H. Yatagai, Y. Yamamoto, and K. Maruyama, J. Am. Chem. Soc. 102:4548 (1980).CrossRefGoogle Scholar
  5. 1e.
    R. Mohan and J. A. Katzenellenbogen, J. Org. Chem. 49:1234 (1984).CrossRefGoogle Scholar
  6. 1f.
    B. M. Trost and A. Brandi, J. Org. Chem. 49:4811 (1984).CrossRefGoogle Scholar
  7. 1g.
    H. C. Brown and T. Imai, J. Am. Chem. Soc. 105:6285 (1983).CrossRefGoogle Scholar
  8. 1h.
    H. C. Brown, N. G. Bhat, and J. B. Campbell, Jr., J. Org. Chem. 51:3398 (1986).CrossRefGoogle Scholar
  9. 2a.
    H. C. Brown, M. M. Rogic, H. Nambu, and M. W. Rathke, J. Am. Chem. Soc. 91:2147 (1969)CrossRefGoogle Scholar
  10. H. C. Brown, H. Nambu, and M. M. Rogic, J. Am. Chem. Soc. 91:6852 (1969).CrossRefGoogle Scholar
  11. 2b.
    H. C. Brown and R. A. Coleman, J. Am. Chem. Soc. 91:4606 (1969).CrossRefGoogle Scholar
  12. 2c.
    H. C. Brown and G. W. Kabalka, J. Am. Chem. Soc. 92:714 (1970).CrossRefGoogle Scholar
  13. 2d.
    G. Zweifel, R. P. Fisher, J. T. Snow, and C. C. Whitney, J. Am. Chem. Soc. 93:6309 (1971).CrossRefGoogle Scholar
  14. 2e.
    H. C. Brown and M. W. Rathke, J. Am. Chem. Soc. 89:2738 (1967).CrossRefGoogle Scholar
  15. 2f.
    H. C. Brown and M. M. Rogic, J. Am. Chem. Soc. 91:2146 (1969).CrossRefGoogle Scholar
  16. 3.
    See references in Scheme 9.1.Google Scholar
  17. 4a.
    H. C. Brown, H. D. Lee, and S. U. Kulkarni, J. Org. Chem. 51:5282 (1986).CrossRefGoogle Scholar
  18. 4b.
    J. A. Sikorski, N. G. Bhat, T. E. Cole, K. K. Wang, and H. C. Brown, J. Org. Chem. 51:4521 (1986).CrossRefGoogle Scholar
  19. 4c.
    S. U. Kulkarni, H. D. Lee, and H. C. Brown, J. Org. Chem. 45:4542 (1980).CrossRefGoogle Scholar
  20. 4d.
    M. C. Welch and T. A. Bryson, Tetrahedron Lett. 29:521 (1988).CrossRefGoogle Scholar
  21. 5a.
    D. R. McKean, G. Parrinello. A. F. Renaldo, and J. K. Stille, J. Org. Chem. 52:422 (1987).CrossRefGoogle Scholar
  22. 5b.
    L. Kuwajima and H. Urabe, J. Am. Chem. Soc. 104:6830 (1982).CrossRefGoogle Scholar
  23. 5c.
    A. Pelter, K. J. Gould, and C. R. Harrison, Tetrahedron Lett. 1975:3327.Google Scholar
  24. 5d.
    A. Pelter and R. A. Drake, Tetrahedron Lett. 29:4181 (1988).CrossRefGoogle Scholar
  25. 5e.
    L. E. Overman and M. J. Sharp, J. Am. Chem. Soc. 110:612 (1988).CrossRefGoogle Scholar
  26. 5f.
    H. C. Brown and S. U. Kulkarni, J. Org. Chem. 44:2422 (1979).CrossRefGoogle Scholar
  27. 6a.
    W. R. Roush, M. A. Adam, and D. J. Harris, J. Org. Chem. 50:2000 (1985).CrossRefGoogle Scholar
  28. 6b.
    S. J. Danishefsky, S. DeNinno, and P. Lartey, J. Am. Chem. Soc. 109:2082 (1987).CrossRefGoogle Scholar
  29. 6c.
    J. Hooz and D. M. Gunn, J. Am. Chem. Soc. 91:6195 (1969).CrossRefGoogle Scholar
  30. 6d.
    D. A. Heerding, C. Y. Hong, N. Kado, G. C. Look, and L. E. Overman, J. Org. Chem. 58:6947 (1993).CrossRefGoogle Scholar
  31. 7a, b.
    H. C. Brown and N. G. Bhat, J. Org. Chem. 53:6009 (1988).CrossRefGoogle Scholar
  32. 7c, d.
    H. C. Brown, D. Basavaiah, S. U. Kulkarni, N. Bhat, and J. V. N. Vara Prasad, J. Org. Chem. 53:239 (1988).CrossRefGoogle Scholar
  33. 8a.
    J. A. Marshall, S. L. Crooks, and B. S. DeHoff, J. Org. Chem. 53:1616 (1988).CrossRefGoogle Scholar
  34. 8b.
    B. M. Trost and T. Sato, J. Am. Chem. Soc. 107:719 (1985).CrossRefGoogle Scholar
  35. 9a.
    W. E. Fristad, D. S. Dime, T. R. Bailey, and L. A. Paquette, Tetrahedron Lett. 1979:1999.Google Scholar
  36. 9b.
    E. Piers and H. E. Morton, J. Org. Chem. 45:4263 (1980).CrossRefGoogle Scholar
  37. 9c.
    J. C. Bottaro, R. N. Hanson, and D. E. Seitz, J. Org. Chem. 46:5221 (1981).CrossRefGoogle Scholar
  38. 9d.
    Y. Yamamoto and A. Yanagi, Heterocycles 16:1161 (1981).CrossRefGoogle Scholar
  39. 9e.
    M. B. Anderson and P. L. Fuchs, Synth. Commun. 17:621 (1987)CrossRefGoogle Scholar
  40. B. A. Narayanan and W. H. Bunelle, Tetrahedron Lett. 28:6261 (1987).CrossRefGoogle Scholar
  41. 9f.
    A. Hosomi, M. Sato, and H. Sakurai, Tetrahedron Lett. 1979:429.Google Scholar
  42. 10.
    P. A. Grieco and W. F. Fobare, Tetrahedron Lett. 27:5067 (1986).CrossRefGoogle Scholar
  43. 11.
    E. J. Corey and W. L. Seibel, Tetrahedron Lett. 27:905 (1986).CrossRefGoogle Scholar
  44. 12a.
    J. A. Marshall, S. L. Crooks, and B. S. DeHoff, J. Org. Chem. 53:1616 (1988)CrossRefGoogle Scholar
  45. J. A. Marshall and W. Y. Gung, Tetrahedron Lett. 29:3899 (1988).CrossRefGoogle Scholar
  46. 12b.
    E. Moret and M. Schlosser, Tetrahedron Lett. 25:4491 (1984).CrossRefGoogle Scholar
  47. 12c.
    L. K. Truesdale, D. Swanson, and R. C. Sun, Tetrahedron Lett. 26:5009 (1985).CrossRefGoogle Scholar
  48. 12d.
    B. M. Trost and T. Sato, J. Am. Chem. Soc. 107:719 (1985).CrossRefGoogle Scholar
  49. 12e.
    R. L. Funk and G. L. Bolton, J. Org. Chem. 49:5021 (1984).CrossRefGoogle Scholar
  50. 12f.
    L. E. Overman, T. C. Malone, and G. P. Meier, J. Am. Chem. Soc. 105:6993 (1983).CrossRefGoogle Scholar
  51. 12g.
    Y. Naruse, T. Esaki, and H. Yamamoto, Tetrahedron Lett. 29:1417 (1988).CrossRefGoogle Scholar
  52. 13a.
    H. C. Brown, T. Imai, M. C. Desai, and B. Singaran, J. Am. Chem. Soc. 107:4980 (1985).CrossRefGoogle Scholar
  53. 13b, c.
    H. C. Brown, R. K. Bakshi, and B. Singaran, J. Am. Chem. Soc. 110:1529 (1988).CrossRefGoogle Scholar
  54. 13d.
    H. C. Brown, M. Srebnik, R. R. Bakshi, and T. E. Cole, J. Am. Chem. Soc. 109:5420 (1987).CrossRefGoogle Scholar
  55. 14.
    K. K. Wang and K.-H. Chu, J. Org. Chem. 49:5175 (1984).CrossRefGoogle Scholar
  56. 15a.
    W. R. Roush, J. A. Straub, and M. S. VanNieuwenhze, J. Org. Chem. 56:1636 (1991).CrossRefGoogle Scholar
  57. 15b.
    L. A. Paquette and G. D. Maynard, J. Am. Chem. Soc. 114:5018 (1992).CrossRefGoogle Scholar
  58. 15c.
    Y. Nishigaichi, N. Ishida, M. Nishida, and A. Takuwa, Tetrahedron Lett. 37:3701 (1996).CrossRefGoogle Scholar
  59. 15d.
    C. Y. Hong, N. Kado, and L. E. Overman, J. Am. Chem. Soc. 115:11028 (1993).CrossRefGoogle Scholar
  60. 15e.
    P. V. Ramachandran, G.-M. Chen, and H. C. Brown, Tetrahedron Lett. 38:2417 (1997).CrossRefGoogle Scholar
  61. 15f.
    A. B. Charette, C. Mellon, and M. Motamedi, Tetrahedron Lett. 36:8561 (1995).CrossRefGoogle Scholar
  62. 15g.
    C. Masse, M. Yang, J. Solomon, and J. S. Panek, J. Am. Chem. Soc. 120:4123 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Francis A. Carey
    • 1
  • Richard J. Sundberg
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations