Advertisement

A Non Cooperative Game in a Distributed Parameter System

  • J. P. Yvon
Part of the Lecture Notes in Computer Science book series (LNCIS)

Abstract

This paper is devoted to study a class of differential games for distributed parameter systems. Essentially we study a Nash equilibrium point for a system governed by a parabolic equation. A method based on the SCARF-HANSEN [1] algorithm for solution of non-cooperative games is given.

Keywords

Equilibrium Point Cooperative Game Differential Game Weak Topology Parabolic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. BENSOUSSAN “Point de Nash pour des jeux différentiels à n personnes”. To appear in SIAM J. of Control.Google Scholar
  2. [1]
    A. BENSOUSSAN, J.L. LIONS, R. TEMAM Cahier de l’IRIA n°11. June 1972.Google Scholar
  3. [1]
    J.D. BREDEHOEFT, R. YOUNG “The temporal allocation of a ground-water a simulation approach”. Water Resource Research. Vol. 6 n°1. (1970)Google Scholar
  4. [1]
    B.C. EAVES “Computing Kakutani fixed points” Siam J. of Appl. Math. Vol. 21 n° 2 (1971).Google Scholar
  5. [1]
    T. HANSEN, H. SCARF “On the approximation of a Nash equil.point” Cowles Foundation. Discussion paper n°272.Google Scholar
  6. [1]
    H.W. KUHN “Simplicial approximation of fixed points”. Proc. N.A.S. n°6 (1968).Google Scholar
  7. [1]
    J.L. LIONS Contrôle optimal des systèmes distribués. DUNOD (1968).Google Scholar
  8. [2]
    J.L. LIONS Quelques méthodes de résolution des problèmes non linéaires. DUNOD Paris (1969).MATHGoogle Scholar
  9. [1]
    J. NASH “Equilibrium points in N person game”. Proc. of N.A.A. Vol. 36 (1950).Google Scholar
  10. [1]
    J.B. ROSEN “Existence and uniqueness of Equilibrium point for concave n-person game”. Econometrica Vol. 33 n°3 (1965).Google Scholar
  11. [1]
    H. SCARF 16 “The approx. of fixed points...”. SIAM J. of App. Math. Vol. 15 n°5 (1967).Google Scholar
  12. [1]
    J.P. YVON To appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • J. P. Yvon
    • 1
  1. 1.Iria - Laboria73 - RocquencourtFrance

Personalised recommendations