Antibiotics pp 642-648 | Cite as


  • F. Edmund HunterJr.
  • Lois S. Schwartz


Gramicidin, produced by Bacillus brevis, was isolated along with tyrocidine in 1941 (Hotchkiss, 1944) from the crude material described by Dubos (1939). Early preparations were called gramicidin D (Dubos). Later, countercurrent distribution techniques resolved gramicidin into four groups of polypeptides now specifically designated as gramicidins A, B, C, D. Many commercial preparations are mixtures of the Dubos type.


Liver Mitochondrion Monovalent Cation Sucrose Medium Rhodospirillum Rubrum Uncouple Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baltscheffsky, H., and M. Baltscheffsky: Inhibitor studies on light induced phosphorylation in extracts of Rhodospirillum rubrum. Acta Chem. Scand. 14, 257 (1960).CrossRefGoogle Scholar
  2. Bobyr, A. D.: Antiviral activity of some antibiotics and other substances depending on the period of infection development. Mikrobiol. Zhur., Akad. Nauk Ukr. R.S.R., 23, 27 (1961).Chem. Abstr. 57, 3822 b.Google Scholar
  3. Brock, T. D.: Effect of antibiotics and inhibitors on M protein synthesis. J. Bacteriol. 85, 527 (1963).PubMedGoogle Scholar
  4. Brodie, A. F., and C. T. Gray: Phosphorylation coupled to oxidation in bacterial extracts. J. Biol. Chem. 219, 853 (1956).PubMedGoogle Scholar
  5. Chappell, J. B., and A. R. Crofts: Gramicidin and ion transport in isolated liver mitochondria. Biochem. J. 95, 393 (1965 a).Google Scholar
  6. Chappell, J. B., and A. R. Crofts: Ion transport and reversible volume changes of isolated mitochondria. Symposium on the Regulation of Metabolic Processes in Mitochondria, Bari, Italy. April 1965 (1965 b).Google Scholar
  7. Cooper, C., and A. L. Lehninger: Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. IV. Adenosinetriphosphatase activity. J. Biol. Chem. 224, 547 (1957).PubMedGoogle Scholar
  8. Creaser, E. H.: The induced (adaptive) biosynthesis of ß-galactosidase in Staphylococcus aureus. J. Gen. Microbiol. 12, 288 (1955).PubMedCrossRefGoogle Scholar
  9. Cross, R. J., J. Taggert, G. Covo, and D. E. Green: Studies on the cyclophorase system. VI. The coupling of oxidation and phosphorylation. J. Biol. Chem. 177, 655 (1949).PubMedGoogle Scholar
  10. Dubos, R. J.: Studies on a bactericidal agent extracted from a soil bacillus. I. Preparation of the agent. Its activity in vitro. J. Exptl. Med. 70, 1 (1939).Google Scholar
  11. Dusos, R. J., R. D. Hotchkiss, and A. F. Coburn: Effect of gramicidin and tyrocidine on bacterial metabolism. J. Biol. Chem. 146, 421 (1942).Google Scholar
  12. Florey, H. W., E. Chain, N. G. Heatley, M. A. Jennings, A. G. Sanders, E. P. Abraham, and M. E. Florey: Antibiotics, vols. I and II. London: Oxford University Press 1949.Google Scholar
  13. Gale, E. F.: Mechanisms of antibiotic action. Pharmacol. Rev. 15, 481 (1963).PubMedGoogle Scholar
  14. Guerra, L., and F. E. Hunter JR.: Sucrose inhibition of gramicidin induced swelling of isolated rat liver mitochondria. Broteria, Serie de Ciencias Naturais Xxxiv (Lxi), 227. Lisbon 1965 a.Google Scholar
  15. Guerra, L., and F. E. Hunter JR.: Relationship of gramicidin induced swelling of liver mitochondria to electron transport and high energy intermediates. Federation Proc. 24, No. 2, March—April (1965 b).Google Scholar
  16. Henle, G., and C. A. Zittle: Effect of gramicidin on metabolism of bovine spermatozoa. Proc. Soc. Exptl. Biol. Med. 47, 193 (1941).CrossRefGoogle Scholar
  17. Herrell, W. E., and D. Heilman: Experimental and clinical studies on gramicidin. J. Clin. Invest. 20, 583 (1941).PubMedCrossRefGoogle Scholar
  18. Herrell, W. E., and D. Heilman: Tissue culture studies on cytotoxicity of bactericidal agents. Iii. Cytotoxicity and antibacterial activity of gramicidin and penicillin, comparison with other germicides. Am. J. Med. Sci. 206, 221 (1943).CrossRefGoogle Scholar
  19. Hotchkiss, R. D.: Gramicidin, tyrocidine, and tyrothricin. Advances in Enzymology 4, 153 ( 1944 ). New York: Interscience Publ. 1944.Google Scholar
  20. Hunter, JR., F. E.: The relationship of dinitrophenol activated adenosinetriphosphatase to uncoupling mechanisms and possible phosphorylation of electron transfer catalysts. Proceedings of the Third Internat. Congr. of Biochemistry, Brussels 1955 (C. Liebecq, ed.), p. 298. New York: Academic Press 1956.Google Scholar
  21. Ishii, S. I., and B. Witkop: Gramicidin A. I. Determination of composition and amino acid configuration by enzymatic and gas chromatographic methods. J. A. Chem. Soc. 85, 1832 (1963).CrossRefGoogle Scholar
  22. James, A. T., and R. L. M. Synge: Non-peptide linkages in gramicidin. Biochem. J. 50, 109 (1951).PubMedGoogle Scholar
  23. Merrick, J. M.: Effect of polymixin B, tyrocidine, gramicidin D, and other antibiotics on the enzymatic hydrolysis of poly-ß-hydroxybutyrate. J. Bacteriology 90, 965 (1965).Google Scholar
  24. Miura, Y.: Metabolism of rat ascites tumors with nitrogen mustard sensitive and resistant strains. Vii. Effect of ubiquinone and vitamin Ks on succinate and a-glycerophosphate-neotetrazolium reductases. J. Biochem. (Japan) 52, 43 (1962).Google Scholar
  25. Neubert, D., and A. L. Lehninger: The effect of oligomycin, gramicidin, and other antibiotics on reversal of mitochondrial swelling by adenosinetriphosphate. Biochim. et Biophys. Acta 62, 556 (1962 a).Google Scholar
  26. Neubert, D., and A. L. Lehninger: Role of C-factor in water uptake and extrusion by mitochondria and interference by various drugs. Biochem. Pharmacol. 9, 127 (1962b).PubMedCrossRefGoogle Scholar
  27. Okuda, K., C. S. Lin, and T. Winnick • Amino acid composition of gramicidin. Nature 195, 1067 (1962).Google Scholar
  28. Pomerat, C. M.: Effect of direct applications of tyrothricin and allantoin to cells in vitro. Proc. Soc. Exptl. Biol. Med. 51, 345 (1942).CrossRefGoogle Scholar
  29. Pressman, B. C.: Induced active transport of ions in mitochondria. Proc. Natl. Acad. Sci. (U.S.) 53, 1076 (1965).CrossRefGoogle Scholar
  30. Price, W. H.: Bacteriophage formation without bacterial growth. Iii. Effect of iodoacetate, fluoride, gramicidin, and azide on the formation of bacteriophage. J. Gen. Physiol. 31, 135 (1947).PubMedCrossRefGoogle Scholar
  31. Ramachandran, L. K.: On the heterogeneity of gramicidin. Biochemistry 2, 1138 (1963).PubMedCrossRefGoogle Scholar
  32. Rammelkamp, C. H., and L. Weinstein: Toxic effects of tyrothricin, gramicidin, and tyrocidine. J. Infectious Diseases 71, 166 (1942).CrossRefGoogle Scholar
  33. Santi, R.: Drugs with selective action on oxidative phosphorylation. Arch. ital. sci. farmacol. 12, 5 (1962). Chem. Abstr. 58, 7258e.Google Scholar
  34. Sarges, R., and B. Witkop: Gramicidin. V and Vii. The structure of valine and isoleucine gramicidin A and B. J. Am. Chem. Soc. 87, 2011, 2027 (1965a).PubMedCrossRefGoogle Scholar
  35. Sarges, R., and B. Witkop: Gramicidin. Viii. The structure of valine and isoleucine gramicidin C. Biochemistry 4, 2491 (1965 b).Google Scholar
  36. Shiryaeva, V. L.: Influence of penicillin and gramicidin on certain properties of staphylococcus. Zhur. Mikrobiol., Epidemiol. Immunobiol. No. 6, 64 (1954).Google Scholar
  37. Shiryaeva, V. L.: Influence of penicillin and gramicidin on certain properties of staphylococcus. Chem. Abstr. 49, 7059e.Google Scholar
  38. Weinbach, E. C., H. Sheffield, and J. Garbus: Restoration of oxidative phosphorylation and morphological integrity to swollen, uncoupled rat liver mitochondria. Proc. Natl. Acad. Sci. U.S. 50, 561 (1963).CrossRefGoogle Scholar
  39. Weinstein, J., A. Scott, and F. E. Hunter JR.: The action of gramicidin D On isolated liver mitochondria. J. Biol. Chem. 239, 3031 (1964).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • F. Edmund HunterJr.
  • Lois S. Schwartz

There are no affiliations available

Personalised recommendations