Antibiotics pp 90-101 | Cite as


  • Eugene D. Weinberg


Bacitracin is produced by strains of Bacillus licheniformis. The commercial product contains a main component, bacitracin A (Fig. 1), and at least nine additional closely related polypeptides (Regna, 1959). In neutral or slightly alkaline solution, bacitracin A is slowly transformed into bacitracin F (Fig. 2) (Regna, 1959) which has very little antibacterial activity (Hickey, 1964).


Antibacterial Action Minimal Inhibitory Concentration Stability Constant Bacillus Licheniformis Cell Wall Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraha., E. P., and G. G. F. Newto.: Structure and function of some sulfur containing peptides. In: Cib. foundation symposium on amino acids and peptides with antimetabolic activity, p. 205. London: J. & A. Churchill Ltd. 1958.Google Scholar
  2. Adle., R. H., and J. E. Snok.: Requirement of divalent metal ions for bacitracin activity. J. Bacteriol. 83, 1315 (1962).PubMedGoogle Scholar
  3. Alber., A.: Metal-binding agents in chemotherapy: the activation of metals by chelation. In: The strategy of chemotherapy, p. 112. Cambridge: Cambridge University Press 1958.Google Scholar
  4. Anderso., J. S., M. Matsuhash., M. A. Haski., and J. L. Strominge.: Lipidphosphoacetylmuramylpentapeptide and lipid-phosphodisaccharide-pentapeptide: presumed membrane transport intermediates in cell wall synthesis. Proc. Natl. Acad. Sci. U.S. 5., 881 (1965).CrossRefGoogle Scholar
  5. Anke., H. S., B. A. Johnso., J. Goldber., and F. L. Melene.: Bacitracin: methods of production, concentration, and partial purification, with a summary of the chemical properties of crude bacitracin. J. Bacteriol. 5., 249 (1948).Google Scholar
  6. Bar., L. N., R. F. Wisema., and O. J. Abbot.: Levels of antibiotics in the intestinal tract of chicks fed bacitracin and penicillin. Poultry Sci. 4., 489 (1965).CrossRefGoogle Scholar
  7. Broc., T. D.: Effect of antibiotics and inhibitors on M protein synthesis. J. Bacteriol. 8., 527 (1963).PubMedGoogle Scholar
  8. Chornoc., F. W.: Zinc bacitracin feed supplement. U.S. Patent., 809, 892 (1957).Google Scholar
  9. Crease., E. H.: The induced (adaptive) biosynthesis of β-galactosidase in Staphylococcus aureu.. J. Gen. Microbiol. 1., 288 (1955).PubMedCrossRefGoogle Scholar
  10. Foy., W. A.: Role of metal-binding in the biological activities of drugs. J. Pharmaceut. Sci. 5., 93 (1961).CrossRefGoogle Scholar
  11. Gal., E. F., and J. P. Folke.: The assimilation of amino acids by bacteria. 15. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureu.. Biochem. J. 5., 493 (1953).PubMedGoogle Scholar
  12. Gal., E. F., and J. P. Folke.: The assimilation of amino acids by bacteria. 21. The effect of nucleic acids on the development of certain enzymatic activities in disrupted staphylococcal cells. Biochem. J. 5., 675 (1955).PubMedGoogle Scholar
  13. Garbut., J. T., A. L. Morehous., and A. M. Hanso.: Metal binding properties of bacitracin. J. Agr. Food Chem., 285 (1961).CrossRefGoogle Scholar
  14. Gezo., H. M., D. M. Fasa., and G. R. Collin.: Antibiotic studies on beta hemolytic streptococci. Vi.. Acquired in vitro resistance to bacitracin. Proc. Soc. Exptl. Biol. Med. 7., 505 (1950).CrossRefGoogle Scholar
  15. Gros., H. M.: Zinc bacitracin in pharmaceutical preparations. Drug & Cosmetic Ind. 7., 612 (1954).Google Scholar
  16. Hancoc., R., and P. C. Fitz-Jame.: Some differences in the action of penicillin, bacitracin, and vancomycin on Bacillus megateriu.. J. Bacteriol. 8., 1044 (1964).PubMedGoogle Scholar
  17. Helm., V., and E. D. Weinber.: Mechanism of antibacterial action of N1,N5-di(3,4-dichlorobenzyl)-biguanide. In: Antimicrobial Agents and Chemotherapy 1962, p. 241. Ann Arbor (Mich.): Amer. Soc. Microbiol. 1963.Google Scholar
  18. Hicke., R. J.: Bacitracin, its manufacture and uses. Progr. Ind. Microbiol., 95 (1964).Google Scholar
  19. Hinto., N. A., and J. H. Or.: The effect of antibiotics on the toxin production of Staphylococcus aureu.. Antibiotics & Chemotherapy 1., 758 (1960).Google Scholar
  20. Hodg., E. B., and G. J. Laffert.: Zinc bacitracin-containing troche. U.S. Patent 2,803, 584 (1957).Google Scholar
  21. Jawet., E.: Polymyxin, colistin, and bacitracin. Pediat. Clin. North Am., 1057 (1961).Google Scholar
  22. Krawit., E. L., and J. R. War.: L phase variants related to antibiotic inhibition of cell wall biosynthesis. Proc. Soc. Exptl. Biol. Med. 11., 629 (1963).CrossRefGoogle Scholar
  23. Lowbur., E. J. L.: Clinical problems of drug-resistant pathogens. Brit. Med. Bull. 1., 73 (1960).PubMedGoogle Scholar
  24. Mandelsta., J., and H. J. Roger.: The incorporation of amino acids into the cell-wall mucopeptide of staphylococci and the effect of antibiotics on the process. Biochem. 72, 654 (1959).PubMedGoogle Scholar
  25. Maxte., W. R.: The use of bacitracin for identifying group A haemolytic streptococci. J. Clin. Pathol., 224 (1953).PubMedCrossRefGoogle Scholar
  26. Molande., C. W., B. M. Kaga., H. J. Weinberge., E. M. Heimlic., and R. J. Busse.: Induction by antibiotics and comparative sensitivity of L-phase variants of Staphylococcus aureu.. J. Bacteriol. 8., 591 (1964).PubMedGoogle Scholar
  27. Par., J. T.: Inhibition of synthesis of bacterial mucopeptide or protein by certain antibiotics and its possible significance for microbiology and medicine. In: Antimicrobial Agents Ann. 1960, p. 338. New York: Plenum Press 1961.Google Scholar
  28. Petra., E. I.: Comparison of the fluorescent antibody and the bacitracin disk methods for identification of group A streptococci. Amer. J. Clin. Pathol. 4., 224 (1961).Google Scholar
  29. Regn., P. P.: The chemistry of antibiotics. In: Antibiotics; their chemistry and nonmedical uses, p. 58. New York: D. van Nostrand Co., Inc. 1959.Google Scholar
  30. Rott., J., W. W. Karakaw., and R. M. Kraus.: Isolation of L forms from group A streptococci exposed to bacitracin. J. Bacteriol. 8., 1581 (1965).PubMedGoogle Scholar
  31. Schroede., H. A., and J. J. Balass.: Abnormal trace metals in man cadmium. J. Chronic Diseases 1., 236 (1961).CrossRefGoogle Scholar
  32. Shar., V. E., A. Arriagad., G. G. F. Newto., and E. P. Abraha.: Ayfivin: extraction, purification, and chemical properties. Brit. J. Exptl. Pathol. 3., 444 (1949).Google Scholar
  33. Shockma., G. D., and J. O. Lampe.: Inhibition by antibiotics of the growth of bacterial and yeast protoplasts. J. Bacteriol. 8., 508 (1962).PubMedGoogle Scholar
  34. Smit., J. L., and E. D. Weinber.: Mechanisms of antibacterial action of bacitracin. J. Gen. Microbiol. 2., 559 (1962).PubMedCrossRefGoogle Scholar
  35. Snok., J. E., and N. Cornel.: Protoplast lysis and inhibition of growth of Bacillus licheniformi. by bacitracin. J. Bacteriol. 8., 415 (1965).PubMedGoogle Scholar
  36. Ston., J. L.: Induced resistance to bacitracin in cultures of Staphylococcus aureu.. J. Infectious Diseases 8., 91 (1949).CrossRefGoogle Scholar
  37. Szybalsk., W., and V. Bryso.: Genetic studies on microbial cross resistance to toxic agents. 1. Cross resistance of Escherichia col. to fifteen antibiotics. I. Bacteriol. 6., 489 (1952).Google Scholar
  38. Tipto., I. H., and M. J. Coo.: Trace elements in human tissue. Part II. Adult subjects from the United States. Health Physics., 103 (1963).PubMedCrossRefGoogle Scholar
  39. Tipto., I. H., H. A. Schroede., H. M. Perr. jr., and M. J. Coo.: Trace elements in human tissue. Part Ii.. Subjects from Africa, the Near and Far East, and Europe. Health Physics 1., 403 (1965).Google Scholar
  40. Vohr., P., and F. H. Kratze.: Influence of various chelating agents on the availability of zinc. J. Nutrition 8., 249 (1964).Google Scholar
  41. War., J. R., S. Madof., and L. Diene.: In vitro sensitivity of some bacteria, their L forms and pleuropneumonia-like organisms to antibiotics. Proc. Soc. Exptl. Biol. Med. 9., 132 (1958).CrossRefGoogle Scholar
  42. Weinber., E. D.: The mutual effects of antimicrobial compounds and metallic cations Bacteriol. Rev. 2., 46 (1957).Google Scholar
  43. Weinber., E. D.: Enhancement of bacitracin by the metallic ions of group Ii.. In: Antibiotics Annual 1958/59, 924. New York (N.Y.): Medical Encyclopedia, Inc. 1959.Google Scholar
  44. Weinber., E. D.: Known and suspected roles of metal coordination in actions of antimicrobial drugs. Federation Proc. 2. (Suppl. 10), 132 (1961).Google Scholar
  45. Weinber., E. D.: Antibacterial action of polyamines in presence of trace metals: enhancement by cadmium. In: Antimicrobial Agents and Chemotherapy 1963, 573. Ann Arbor (Mich.): Amer. Soc. Microbiol. 1964.Google Scholar
  46. Weinber., E. D.: Microbiological method for estimation of stability constants of bacitracin complexes of zinc, cadmium, and manganese. In: Antimicrobial Agents and Chemotherapy 1964, 120. Ann Arbor (Mich.): Amer. Soc. Microbiol. 1965.Google Scholar
  47. William., R. E. O.: L forms of Staphylococcus aureu.. J. Gen. Microbiol. 3., 325 (1963).PubMedCrossRefGoogle Scholar
  48. Wis., E. M., and J. T. Par.: Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. Proc. Natl. Acad. Sci. U.S. 5., 75 (1965).CrossRefGoogle Scholar
  49. Ziffe., J., and T. J. Cairne.: Bacitracin composition as feed additive. U.S. Patent 3,025, 216 (1962).Google Scholar
  50. Zin., E., and F. W. Chornoc.: Production of bacitracin. U.S. Patent 2,834, 711 (1958).Google Scholar
  51. Zor., R. A.: Stabilization of bacitracin. U.S. Patent 2,903, 357 (1959).Google Scholar
  52. Zor., R. A.: Bacitracin product. U.S. Patent 3,021, 217 (1962).Google Scholar
  53. Zor., R. A., R. C. Malzah., and A. M. Hanso.: Bacitracin. U.S. Patent 2,985, 534 (1961).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • Eugene D. Weinberg

There are no affiliations available

Personalised recommendations