Antibiotics pp 499-541 | Cite as

Sideromycins

  • J. Nüesch
  • F. Knüsel

Abstract

In recent years, substances containing iron and showing a broad absorption band, with an absorption maximum between 420 and 440 mμ, have been isolated from cultures of various microorganisms (Brcxel et al., 1960a; Prelog, 1963; Keller-Schierlein et al., 1964). Within this group of naturally occurring substances can be found some which display antibiotic properties, whereas others antagonise this antibiotic activity and actually promote the growth of certain micro-organisms. Chemical studies have revealed that all these substances are iron (III)-trihydroxamate complexes. For this reason, Bickel et al. (1960a) designated them collectively as “siderochromes”. Subsequently, Zähner et al. (1962) subdivided them on the basis of their biological properties into the following categories:
  1. a)

    Sideromycins; i.e. siderochromes displaying antibiotic activity.

     
  2. b)

    Sideramines; i.e. siderochromes which competitively antagonise the antibiotic effect of the sideromycins and which also exert a growth-promoting action on certain micro-organisms.

     
  3. c)

    Siderochromes whose biological properties are as yet unknown.

     

Keywords

Fermentation Bacillus Pyruvate Catalase Biotin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachmann, E., u. H. Zähner: Stoffwechselprodukte von Actinomyceten. 28. Mitt. Die „in vitro“-Resistenz gegen Ferrimycin. Arch. Mikrobiol. 38, 326 (1961).PubMedCrossRefGoogle Scholar
  2. Beljanski, M., et M. Beljanski: Sur la formation d’enzymes respiratoires chez un mutant d’escherichia coli streptomycine-résistant et auxotrophe pour l’hémine. Ann. inst. Pasteur. 92, 396 (1957).Google Scholar
  3. Benz, F., and H. Bickel: Personal communication 1965.Google Scholar
  4. Bergmeyer, H. U.: Methoden der enzymatischen Analyse (Glyoxalat, S. 300, Malat, S. 328, Pyruvat, S. 253 ). Weinheim: Verlag Chemie 1962.Google Scholar
  5. Bickel, H., E. GÄUmann, W. Keller-Schierlein, V. Prelog, E. Vischer, A. W.Ttstein u. H. ZÄHner: Über eisenhaltige Wachstumsfaktoren, die Sideramine und ihre Antagonisten, die eisenhaltigen Antibiotika Sideromycine. Experientia 16 (4), 129 (1960a).Google Scholar
  6. Bickel, H., E. GÄUmann, G. Nussberger, P. Reusser, E. Vischer, W. Voser, A. Wettstein u. H. ZÄHner: Stoffwechselprodukte Von Actinomyceten. 25. Mitt. Über die Isolierung und Charakterisierung der Ferrimycine Ai und A2, neuer Antibiotika der Sideromycin-Gruppe. Helv. Chim Acta 43, 2105 (1960b).CrossRefGoogle Scholar
  7. Bickel, H., P. Mertens, V. Prelog, J. Seibl, and A. Walser: The constitution of Ferrimycin Al. IVth Int. Congr. Chemother. 1965 (Abstracts) p. 15.Google Scholar
  8. Boehringer: Glutamat-Oxalacetat-Transaminase „Boehringer“. Biochemica Testcombination „Boehringer”, C. F. Boehringer & Söhne GmbH Mannheim 1962.Google Scholar
  9. Boehringer: Isocitronensäure-Dehydrogenase nach „Boehringer“, Biochemica Informationen „Boehringer”, C. F. Boehringer & Söhne GmbH Mannheim 1961.Google Scholar
  10. Boehringer: Ketoglutarsäure-Test. Biochemica Testkombinationen „Boehringer“, C. F. Boehringer & Söhne GmbH Mannheim 1962.Google Scholar
  11. Boehringer: Lactat-Test. Biochemica Testkombination „Boehringer“, C. F. Boehringer & Söhne GmbH Mannheim 1962.Google Scholar
  12. Brinberg, S. L., and T. I. Grinyuk: The physiological features of Act. subtropicus in connection with the biosynthesis of the antibiotic Albomycin. Antibiotics UdSsr 4, 534 (1959).Google Scholar
  13. Burnham, F. B.: Bacterial iron metabolism. Investigations on the mechanism of ferrichrome function Arch. Biochem. Biophys. 97, 329 (1962a).CrossRefGoogle Scholar
  14. Burnham, F. B.: Personal communication 1962b.Google Scholar
  15. Burnham, F. B., and J. B. Neilands: Studies on the metabolic function of the ferri-chrome compounds. J. Biol. Chem. 236 (2), 554 (1961).PubMedGoogle Scholar
  16. Coultas, M. K., and D. I. Hutchinson: Metabolism of resistent mutants of streptococcus faecalis. IV. Use of a biophotometer in growth-curve studies. J. Bacteriol. 84, 393 (1962).PubMedGoogle Scholar
  17. Das, S. K., and G. C. Chatterjee: Pyrithiamine adaptation of Staphylococcus aureus. I. Adaption and carbohydrate utilization. J. Bacteriol. 83, 1251 (1962).PubMedGoogle Scholar
  18. Das, S. K., and G. C. Chatterjee: Pyrithiamine adaptation of Staphylococcus aureus. II. Tricarboxylic acid cycle and related enzymes. J. Bacteriol. 86, 1157 (1963).PubMedGoogle Scholar
  19. Demain, A. L., and D. Hendlin: “Iron transport” compounds as growth stimulators for Microbacterium sp. J. gen. Microbiol. 21, 72 (1959).PubMedCrossRefGoogle Scholar
  20. Francis, J., H. M. Macturk, J. Madinaveitia, and G. A. Snow: Mycobactin, a growth factor for Mycobacterium johnei. I. Isolation from Mycobacterium phlei. Biochem. J. 55, 596 (1953).PubMedGoogle Scholar
  21. Garibaldi, J. A., and J. B. Neilands: Formation of iron binding compounds by micro-organisms. Nature 177, 526 (1956).PubMedCrossRefGoogle Scholar
  22. Gause, G. F.: Recent studies on Albomycin, a new antibiotic. Brit. med. 1955, 1177.Google Scholar
  23. Gause, G. F., u. M. G. Brazhnikova: Die Wirkung von Albomycin gegen Bakterien [Russ.]. Novostin. Med., Akad. Med. Nauk S. S. S. R. 23, 3 (1951).Google Scholar
  24. Umann, E., E. Vischer u. H. Bickel: Verfahren zur Herstellung eines neuen Antibiotikums. Deutsche Auslegeschrift Das 1129, 259 (1951).Google Scholar
  25. Granick, S., and H. Gilder: The porphyrin requirements of Haemophilus influenzae and some functions of the vinyl and propionic acid side chains of heure. J. Gen. Physiol. 30, 1 (1946).CrossRefGoogle Scholar
  26. Green, D. E., and H. Beinert: Biological oxidations. Ann. Rev. Biochem. 24, 1 (1955).PubMedCrossRefGoogle Scholar
  27. Haskell, TH. H., R. H. Bunge, J. C. French, and Qu. R. Bartz: Succinimycin, a new iron-containing antibiotic. J. Antibiotics (Japan), Serie A 16, 67 (1963).Google Scholar
  28. Hesseltine, C. W., C. Pidacks, A. R. Whitehill, N. Bohonos, B. L. Hutchings, and J. H. Williams: Coprogen, a new growth factor for coprophilic fungi. J. Am. Chem. Soc. 74, 1362 (1952).CrossRefGoogle Scholar
  29. Hills, G. M.: Aneurin (Vitamin B1) and pyruvate metabolism by Staphylococcus aureus. Biochem. J. 32, 383 (1938).PubMedGoogle Scholar
  30. Hogg, R. W., CH. S. Biswas, arid H. P. Broquist: Interference with valine and isoleucine biosynthesis by cyclic hydroxamic acids. J. Bacteriol. 90, 1265 (1965).PubMedGoogle Scholar
  31. Huang, H. T.: Microbial production of amino acids. Progr. Ind. Microbiol. 5, 55 (1964).Google Scholar
  32. Tter, R.: Zur Systematik der Aktinomyceten. 10. Streptomyceten mit griseus Luftmycel. Giorn. microbiol. 11, 191 (1963).Google Scholar
  33. Jensen, J., U. E. Thofern: Chlorohämin (Ferriporphyrinchlorid) als Bakterienwuchsstoff. I. Z. Naturforsch. 8, 595 (1953a).Google Scholar
  34. Jensen, J., u. E. Thofern: Chlorohämin (Ferriporphyrinchlorid) als Bakterienwuchsstoff. II. Zur Synthese der Hämatinfermente. Z. Naturforsch. 8b, 604 (1953b).Google Scholar
  35. Keller-Schierlein, W., V. Prelog u. H. ZÄHner: Siderochrome. Fortschr. Chem. org. Naturstoffe 22, 279 (1964).Google Scholar
  36. Keller-Schierlein, W., P. Mertens, V. Prelog U. A. Walser: Die Ferrioxamine A1, A2 und D2. Hely. Chim. Acta 48, 710 (1965).CrossRefGoogle Scholar
  37. Kinoshita, SH.: Amino acids. From biochemistry of industrial micro-organisms, p. 206. London and New York: Academic Press 1963.Google Scholar
  38. Knüsel, F., and J. Nuesch: Mechanism of action of sideromycins. Nature 206, 675 (1965).CrossRefGoogle Scholar
  39. Kornberg, H. L.: Anaplerotic sequences in microbial metabolism (1). Angew. Chem. (internat. edit.) 4, 558 (1965).CrossRefGoogle Scholar
  40. Krysin, E. P., u. N. A. Poddubnaya: Chemische Untersuchung der Struktur des Albomycin. IV. Bestimmung der Aminosäurezusammensetzung und Umwandlungen der Albomycin-Fraktionen. Zhurn. Obshchei Khim. 33, 1370 (1963).Google Scholar
  41. Kuehl, F. A., M. N. Bishop, L. Chalet, and K. Folkers: Isolation and some chemical properties of grisein. J. Am. Chem. Soc. 73, 1770 (1951).CrossRefGoogle Scholar
  42. Lascelles, J.: An assay of iron protoporphyrin based on the reduction of nitrate by a variant strain of Staphylococcus aureus; synthesis of iron protoporphyrin by suspension of Rhodopseudomonas spheroides. J. Gen. Microbiol. 15, 404 (1956).PubMedCrossRefGoogle Scholar
  43. Lascelles, J.: Synthesis of tetrapyrroles by micro-organisms. Phys. Rev. 41, 417 (1961).Google Scholar
  44. Lochhead, A. G., M. O. Burton, and R. H. Thexton: A bacterial growth factor synthesized by a soil bacterium. Nature 170, 282 (1952).CrossRefGoogle Scholar
  45. Lochhead, A. G., S. Kramer, and A. Goldberg: Quantitative measurement of the iron incorporating enzyme in relation to marrow cells and liver tissue in the rabbit. Brit. J. Haemat. 9, 39 (1963).PubMedCrossRefGoogle Scholar
  46. Morrison, N. E., A. D. Antoine, and E. E. Dewbrey: Synthetic metal chelators which replace the natural growth-factor requirements of Arthrobacter terregens. J. Bacteriol. 89, 1630 (1965).PubMedGoogle Scholar
  47. Neilands, J. B.: A crystalline organo iron compound from the fungus Ustilago spaerogena. J. Am. Chem. Soc. 74, 4846 (1952).CrossRefGoogle Scholar
  48. Neilands, J. B.: Some aspects of microbial iron metabolism. Bacteriol. Rev. 21, 101 (1957).PubMedGoogle Scholar
  49. Okami, Y.: Studies on the characteristic of antibiotic Streptomyces. Iii. Characte-ristices of grisein producing strains. J. Antibiotics (Japan) 3, 93 (1950).Google Scholar
  50. Page, R. M.: The effect of nutrition on growth and sporulation of Pilobolus. Am. J. Bot. 39, 731 (1952).CrossRefGoogle Scholar
  51. Porra, R. J., and O. T. G. JoNes: Studies on ferrochelatase 1. Assay and properties of ferrochelatase from a pig-liver mitochondrial extract. Biochem. J. 87, 181 (1963a).Google Scholar
  52. Porra, R. J., and O. T. G. Jones: Studies on ferrochelatase 2. An investigation of the role of ferrochelatase in the biosynthesis of various haem prosthetic groups. Biochem. J. 87, 186 (1963b).PubMedGoogle Scholar
  53. Prelog, V.: Iron-containing compounds in Micro-organisms Symposium Iron-Metabolism, Aix-en-Provence. Berlin-Göttingen-Heidelberg: Springer 1963.Google Scholar
  54. Ramsey, H. H., and C. E. Lankford: Stimulation of growth initiation by heat degradation products of glucose. J. Bacteriol. 72, 511 (1956).PubMedGoogle Scholar
  55. Reynolds, D. M., A. Schatz, and S. A. Waksman: Grisein, a new antibiotic produced by a strain of Streptomyces griseus. Proc. Soc. Exptl. Biol. Med. 64, 50 (1947).CrossRefGoogle Scholar
  56. Reynolds, D. M., and S. A. Waksman: Grisein, an antibiotic produced by certain strains of Streptomyces griseus. J. Bacteriol. 55, 739 (1948).PubMedGoogle Scholar
  57. RoBbinson, F. A.: The vitamin B complex. New York: John Wiley & Sons. Inc. 1951.Google Scholar
  58. Sackmann, W., P. Reusser, L. Neipp, F. Kradolfer, and F. Gross: Ferrimycin A, a new iron-containing antibiotic. Antibiotics & Chemotherapy 12, 34 (1962).Google Scholar
  59. Schopfer, W. H.: La pyrithiamine comme antivitamine B1. Colloque internat. sur les Antivitamines, Lyon. Bull. soc. chim. biol. 30, 940 (1948).Google Scholar
  60. Seargeant, T. P., C. E. Lankford, and R. W. Traxler: Initiation of growth of Bacillus species in a chemically defined medium. J. Bacteriol. 74, 728 (1957).Google Scholar
  61. Sensi, P., and M. T. Timbal: Isolation of two antibiotics of the grisein and albomycin groups. Antibiot. & Chemotherapy 9, 160 (1958).Google Scholar
  62. Sevcik, V.: Antibiotica aus Actinomyceten, 647 S. Jena: Veb Gustav Fischer 1963.Google Scholar
  63. Snow, G. A.: The structure of Mycobactin P, a growth factor for Mycobacterium johnei, and the significance of its iron complex. Biochem. J. 94, 160 (1965).PubMedGoogle Scholar
  64. Stapley, E. O., and R. E. Ormond: Similarity of albomycin and grisein. Science 125, 587 (1957).PubMedCrossRefGoogle Scholar
  65. Strasters, K. C., and K. C. Winkler: Carbohydrate metabolism of Staphylococcus aureus. J. Gen. Microbiol. 33, 213 (1963).PubMedCrossRefGoogle Scholar
  66. Thofern, E.: Über Synthese, Struktur und Funktion bakterieller Haeminsysteme. Ergeb. Mikrobiol. 34, 213 (1961).Google Scholar
  67. Thrum, H.: Eine neue Methode zur Isolierung der Antibiotika vom Grisein-Typ. Naturwissenschaften 44, 561 (1957).CrossRefGoogle Scholar
  68. Townsley, P. M.: The iron and porphyrin metabolism of Micrococcus lysodeikticus. Doctoral dissertation. Berkeley: University of California, 1956.Google Scholar
  69. Tsukiura, H., M. Okanishi, T. Ohmori, H. Koshiyama, T. Miyaki, H. Kitazima, and H. Kawaguchi: Daunomycin, a new antibiotic. J. Antibiotics (Japan), Ser. A 17, 39 (1964).Google Scholar
  70. Turkova, J., O. Mikes, and F. Sorm: Isolation of the biologically active component albomycin in pure form and its thermal degradation. Antibiotiki 7, 878 (1962).PubMedGoogle Scholar
  71. Umezawa, H., S. Hayano, and Y. Ogata: Studies on an antibiotic substance of Streptomycesgriseus, Grisein. J. Antibiotics (Japan), Ser. B 2, 104 (1949).Google Scholar
  72. Warren, R. A. J., and J. B. Neilands: Mechanism of microbial catabolism of Ferrichrome A. J. Biol. Chem. 240, 255 (1965).Google Scholar
  73. Weisel, P., and P. J. Allen: Abstr. Inst. Biol. Sci. Meeting. Minneapolis, September 1951.Google Scholar
  74. WoLin, H. L., and H. B. Naylor: Basic nutritional requirements of Micrococcus lysodeikticus. Bacteriol. Proc. 55th General Meeting 1955, 47.Google Scholar
  75. Yamada, SH., and H. Kawaguchi: Pharmacological studies on Danomycin, a new antibiotic. J. Antibiotics (Japan), Ser. A 17, 48 (1964).Google Scholar
  76. Zähner, H., R. Hotter u. E. Bachmann: Zur Kenntnis der Sideromycinwirkung. Arch. Mikrobiol. 36, 325 (1960).CrossRefGoogle Scholar
  77. Zähner, H., E. Bachmann, R. Hotter u. J. Nuesch: Sideramine, eisenhaltige Wachstumsfaktoren aus Mikroorganismen. Path. Mikrobiol. 25, 708 (1962).Google Scholar
  78. Zähner, H.: Antibiotica in der Mikrobiologie. Naturw. Rundschau 17, 391 (1964).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • J. Nüesch
  • F. Knüsel

There are no affiliations available

Personalised recommendations