Skip to main content

Tetracyclines

  • Chapter
Antibiotics

Abstract

The tetracyclines are the prototypes of the broad spectrum antibiotics, so-called because they inhibit the growth of a wide range of microorganisms, including many gram-positive and gram-negative bacteria, species of rickettsia and mycoplasma (PPLO), certain protozoa and large viruses. In Table 1 are listed some representative data on the minimum inhibitory concentration (M.I.C.) of the tetracyclines, in μg/ml, against a variety of microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwala, S. C., C. R. Krishna Murti, and D. L. Shrivastava: Studies on enzyme inhibition in relation to drug action. I. Effect of certain antibiotics on urease. J. Sci. Ind. Research (India) 11B, 1965 (1952).

    Google Scholar 

  • Ajl, S.: As cited in: Symposium on the mode of action of antibiotics. Bacteriol. Rev. 17, 17 (1953).

    Google Scholar 

  • Albert, A.: Avidity of Terramycin and Aureomycin for metallic cations. Nature 172, 201 (1953).

    PubMed  CAS  Google Scholar 

  • Albert, A.: Metal binding in chemotherapy: The activation of metals by chelation. In: The strategy of chemotherapy. Eighth Symposium of the Society for General Microbiology, Cambridge, England, 1958, p. 112.

    Google Scholar 

  • Albert, A., and C. W. Rees: Avidity of the tetracyclines for the cations of metals. Nature 177, 433 (1956).

    PubMed  CAS  Google Scholar 

  • Alexander, B.: Effect of chlortetracycline on vitamin BB and amino acid decarboxylase in bacteria from the alimentary tract of the chick. Appl. Microbiol. 8, 69 (1960).

    PubMed  CAS  Google Scholar 

  • Altenbern, R. A.: The action of Aureomycin on the Escherichia coli bacteriophage T3 system. J. Bacteriol. 65, 288 (1953).

    PubMed  CAS  Google Scholar 

  • Arima, K., and K. IzAki: Accumulation of oxytetracycline relevant to its bacteriocidal action in the cells of Escherichia coli. Nature 200, 192 (1963).

    PubMed  CAS  Google Scholar 

  • Arlinghaus, R., J. Shaeffer, and R. Schweet: Mechanism of peptide bond formation in polypeptide synthesis. Proc. Natl. Acad. Sci. U.S. 51, 1291 (1964).

    CAS  Google Scholar 

  • Arora, K. L., and C. R. Krishna Murti: Enzyme inhibition studies in relation to drug action. VI. Action of certain antibacterial agents on the succinic oxidase system J. Sci. Ind. Research (India) 13B, 482 (1954).

    Google Scholar 

  • Arora, K. L., and C. R. Krishna Murti: Enzyme inhibition in relation to drug action. Vii. Action of certain antibacterial agents on tryptophanase J Sci. Ind. Research (India) 14C, 6 (1955a).

    Google Scholar 

  • Arora, K. L., and C. R. Krishna Murti: Enzyme inhibition studies in relation to drug action. Viii. Action of certain antibacterial agents on the tricarboxylic acid cycle of Vibrio comma. J. Sci. Ind. Research (India) 14C, 66 (1955b).

    Google Scholar 

  • Arora, K. L., and C. R. Krishna Murti: Enzyme inhibition studies in relation to drug action. IX. Action of certain antibacterial agents on catalase. J. Sci. Research (India) 19C, 103 (1960).

    Google Scholar 

  • Bachrach, U., M. Segal, and R. Rozansky: Effect of tetracyclines on formation of amines by bacteria. Proc. Soc. Exptl. Biol. Med. 97, 874 (1958).

    CAS  Google Scholar 

  • Belding, M., and F. Kern, JR.: Inhibition of urease by oxytetracycline. J. Lab. Clin. Med. 61, 560 (1963).

    PubMed  CAS  Google Scholar 

  • Benbough, J., and G. A. Morrison: Bacteriostatic actions of some tetracyclines. J. Pharm. and Pharmacol. 17, 409 (1965).

    CAS  Google Scholar 

  • Bernheim, F.: The effect of certain antibiotics on the formation of an adaptive enzyme in a strain of Pseudomonas aeruginosa. J. Pharmacol. Exptl. Therap. 110, 115 (1954a).

    CAS  Google Scholar 

  • Bernheim, F.: The effect of certain metal ions and chelating agents on the formation of an adaptive enzyme in Pseudomonas aeruginosa. Enzymologia 16, 351 (1954b).

    PubMed  CAS  Google Scholar 

  • Bernheim, F., and W. E. DE Turk: The effect of chloramphenicol and certain other drugs on the oxidation of aromatic amino acids by a strain of Pseudomonas aeruginosa. J. Pharmacol. Exptl. Therap. 105, 246 (1952).

    CAS  Google Scholar 

  • Bernheim, F., and W. E. DE Turk: An aerobic cysteine desulfurase in a mycobacterium. Enzymologia 16, 69 (1953a).

    PubMed  CAS  Google Scholar 

  • Bernheim, F., and W. E. DE Turk: Factors which affect the oxidation of benzoic acid by a strain of Pseudomonas aeruginosa. J. Bacteriol. 65, 65 (1953b).

    PubMed  CAS  Google Scholar 

  • Bohonos, N., A. C. Dornbush, L. I. Feldman, J. H. Martin, E. Pelcak, and J. H. Williams: In vitro studies with chlortetracycline, oxytetracycline and tetracycline. Antibiotics Ann. 1953 /54, 49 (1953).

    Google Scholar 

  • Brock,T. D.: Inhibition of endotrophic sporulation by antibiotics. Nature 195, 309 (1962).

    PubMed  CAS  Google Scholar 

  • Brock, T. D.: Effect of antibiotics and inhibitors on M protein synthesis. J. Bacteriol. 85, 527 (1963).

    PubMed  CAS  Google Scholar 

  • Brody, T. M., and J. A. Bain: The effect of Aureomycin and Terramycin on oxidative phosphorylation. J. Pharmacol. Exptl. Therap. 103, 388 (1951).

    Google Scholar 

  • Brody, T. M., R. Hurwitz, and J. A. Bain: Magnesium and the effect of the tetracycline antibiotics on oxidative processes in mitochondria. Antibiotics Chemotherapy 4, 864 (1954).

    CAS  Google Scholar 

  • CernŸ, R., and V. Habermann: On the effects of tetracycline on the biosynthesis of proteins and nucleic acids with Escherichia coli and Bacillus cereus. Collection Czech Chem. Commun. 29, 1326 (1964).

    Google Scholar 

  • Chandler, C. A., V. Z. Davidson, P. H. Long, and J. J. Monnier: Studies On resistance of staphylococci to penicillin: The production of penicillinase and its inhibition by the action of aureomycin. Bull. Johns Hopkins Hosp. 89, 81 (1951).

    PubMed  CAS  Google Scholar 

  • Chandler, C. A., and E. Von Der Galtz: Studies of the effect of aureomycin on the production of penicillinase by staphylococci. Bull. Johns Hopkins Hosp. 91, 475 (1952).

    PubMed  CAS  Google Scholar 

  • Cheng, L., and J. F. Snell: Studies in metabolic spectra. IV. Effects of tetracyclines, some of their derivatives, and chloramphenicol on accumulation of glutamic acid in Escherichia coli. J. Bacteriol. 83, 711 (1962).

    PubMed  CAS  Google Scholar 

  • Ciak, J., and F. E. Hahn: Mechanisms of action of antibiotics. I. Additive action of chloramphenicol and tetracyclines on the growth of Escherichia coli. J. Bacteriol. 75, 125 (1958).

    PubMed  CAS  Google Scholar 

  • Clark, JR., J. M., and A. Y. Chang: Inhibitors of the transfer of amino acids from aminoacyl soluble ribonucleic acid to proteins. J. Biol. Chem. 240, 4734 (1965).

    CAS  Google Scholar 

  • Colaizzi, J. L., A. M. Knevel, and A. N. Martin: Biophysical study of the mode of action of the tetracycline antibiotics. J. Pharm. Sci. 54, 1425 (1965).

    PubMed  CAS  Google Scholar 

  • Connamacher, R. H., and H G Mandel: Binding of tetracycline to the 30 S ribosomes and to polyuridylic acid. Biochem. Biophys. Research Commun. 20, 98 (1965).

    CAS  Google Scholar 

  • Conover, L. H.: In: Symposium on Antibiotics and Mould Metabolites. Chem. Soc. Special Publication No. 5, p. 48. London, England 1956.

    Google Scholar 

  • Creaser, E. H.: The induced (adaptive) biosynthesis of ß-galactosidase in Staphylococcus aureus. J. Gen. Microbiol. 12, 288 (1955).

    PubMed  CAS  Google Scholar 

  • Delamater, E. D., M. E. Hunter, W. Szybalski, and V. Bryson: Chemically induced aberrations of mitosis in bacteria. J. Gen. Microbiol. 12, 203 (1955).

    PubMed  CAS  Google Scholar 

  • Dellove, JR., B., S. S. Wright, E. M. Purcell, T. W. Mou, and M. Finland: Antibacterial action of tetracycline: Comparisons with oxytetracycline and chlortetracycline. Proc. Soc. Exptl. B.ol. Med. 85, 25 (1954).

    Google Scholar 

  • DoLuisio, J. T., and A. N. Martin: Metal complexation of the tetracycline hydrochlorides. J. Med. Chem. 6, 16 (1963).

    PubMed  CAS  Google Scholar 

  • Doughty, C. C., and J. A. Hayashi: Enzymatic properties of a phage-induced lysin affecting group A streptococci. J. Bacteriol. 83, 4058 (1962).

    Google Scholar 

  • Eagle, H., and A. K. Saz: Antibiotics. Ann. Rev. Microbiol. 9, 173 (1955).

    CAS  Google Scholar 

  • Faguet, M., et E. Edlinger: Antibiotiques et lyse bactériophagique. Vii. L’action de l’aureomycin sur la lyse bactériophagique étudiée au microbiophotométre. Ann. inst. Pasteur 80, 281 (1951).

    CAS  Google Scholar 

  • Fedorov, M. V., and I. Segi: Effect of certain antibiotics on the physiological activity of Azotobacter chroococcum. Mikrobiologiya 30, 275 (1961).

    CAS  Google Scholar 

  • Foster, J. W., and R. F. Pittillo: Reversal by complex natural materials of growth inhibition caused by antibiotics. J. Bacteriol. 65, 361 (1953a).

    PubMed  CAS  Google Scholar 

  • Foster, J. W., and R. F. Pittillo: Metabolite reversal of antibiotic inhibition, especially reversal of Aureomycin inhibition by riboflavin. J. Bacteriol. 66, 478 (1953b).

    PubMed  CAS  Google Scholar 

  • Franklin, T. J.: The inhibition of protein synthesis by chlortetracycline in cell-free systems. Biochem. J. 84, 110P (1962).

    Google Scholar 

  • Franklin, T. J.: The inhibition of incorporation of leucine into protein of cell-free systems from rat liver and Escherichia coli by chlortetracycline. Biochem. J. 87, 449 (1963a).

    PubMed  CAS  Google Scholar 

  • Franklin, T. J.: Absence of effect of chlortetracycline administration on amino acid incorporation and enzyme synthesis in the liver of the intact rat. Biochim. et Biophys. Acta 76, 138 (1963b).

    CAS  Google Scholar 

  • Franklin, T. J.: The effect of chlortetracycline on the transfer of leucine and “transfer” ribonucleic acid to rat-liver ribosomes in vitro. Biochem. J. 90, 624 (1964).

    PubMed  CAS  Google Scholar 

  • Franklin, T. J., and A. Godfrey: Resistance of Escherichia coli to tetracycline. Biochem. J. 94, 54 (1965).

    PubMed  Google Scholar 

  • Freeman, B. A., and R. Circo: Effect of tetracyclines on the intracellular amino acids of molds. J. Bacteriol. 86, 38 (1963).

    PubMed  CAS  Google Scholar 

  • FusIllo, M. H., and M. J. Romansky: The simultaneous increase in resistance of bacteria to Aureomycin and Terramycin upon exposure to either antibiotic. Antibiotics Chemotherapy 1, 107 (1951).

    Google Scholar 

  • Fuwa, I.: Inhibition of polynucleotide phosphorylase by tetracycline and its derivatives. J. Antibiotics (Japan), Ser. B 16, 171 (1963).

    CAS  Google Scholar 

  • Gale, E. F.: Mechanisms of antibiotic action. Pharmacol. Rev. 15, 481 (1963).

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and J. P. FoLkes: The assimilation of amino-acids by bacteria. 15. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem. J. 53, 493 (1953a).

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and J. P. Folkes: The assimilation of amino-acids by bacteria. 18. The incorporation of glutamic acid into the protein fraction of Staphylococcus aureus. Biochem. J. 55, 721 (1953b).

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and J. P. Folkes: The assimilation of amino acids by bacteria. 19. The inhibition of phenylalanine incorporation in Staphylococcus aureus by chloramphenicol and p-chlorophenylalanine Biochem. J. 55, 730 (1953c).

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and J. P. Folkes: The assimilation of amino acids by bacteria. 24. Inhibitors of incorporation of glycine in disrupted staphylococcal cells. Biochem. J. 67, 507 (1957).

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and T. F. Paine: Effect of inhibitors and antibiotics on glutamic acid accumulation and on protein synthesis in Staphylococcus aureus. Biochem. J. 47, X Xvi (1950).

    Google Scholar 

  • Gale, E. F., and T. F. Paine: The action of inhibitors and antibiotics on the accumulation of free glutamic acid and the formation of combined glutamate in Staphylococcus aureus. Biochem. J. 48, 298 (1951).

    PubMed  CAS  Google Scholar 

  • Garrod, L. P., and P. M. Waterworth: The relative merits of the four tetracyclines. Antibiotics Ann. 1959/60, 440 (1960).

    Google Scholar 

  • Ghatak, S., and C. R. Krishna MuRti: Enzyme inhibition studies in relation to drug action. IV. Action of certain antibiotics on alkaline phosphatase. J. Sci. Ind. Research (India) 12B, 160 (1953).

    Google Scholar 

  • Gibson, F., and B. Mcdougall: The effect of chloramphenicol and oxytetracycline on the formation of intermediates in tryptophan biosynthesis. Australian J. Exptl. Biol. Med. Sci. 39, 171 (1961).

    CAS  Google Scholar 

  • Gibson, F., B. Mcdougall, M. J. Jones, and H. Teltscher: The action of antibiotics on indole synthesis by cell suspensions of Escherichia coli. J. Gen. Microbiol. 15, 446 (1956).

    PubMed  CAS  Google Scholar 

  • Goldberg, I. H.: Mode of action of antibiotics. II. Drugs affecting nucleic acid and protein synthesis. Am. J. Med. 39, 722 (1965).

    PubMed  CAS  Google Scholar 

  • Goldman, D. S.: The inhibition of alanine dehydrogenase by metal chelates of tetracyclines. J. Biol. Chem. 235, 616 (1960).

    PubMed  CAS  Google Scholar 

  • Green, M. N., J. B. J.sIMovIch, K. C. Tsou, and A. M. Seligman: Nitroreductase activity of animal tissues and of normal and neoplastic human tissues. Cancer 9, 176 (1956).

    PubMed  CAS  Google Scholar 

  • GRÜNberger, D., J. Skoda, and F. Sorm: Mechanism of antibiotic action. V. Effect of chloramphenicol, chlortetracycline, and oxytetracycline on the synthesis of glutamic acid decarboxylase in Escherichia coli, and of tyrosine decarboxylase in Streptococcus faecalis. Chem. listy 48, 1711 (1954).

    Google Scholar 

  • Guillaume, J., et R. OsTeux: Mode d’action de l’aureomycine. Inhibition du métabolisme du glucose et des acides du cycle citrique chez Proteus mirabilis. Compt. rend. 249, 2643 (1959).

    CAS  Google Scholar 

  • Hahn, F. E.: Modes of action of antibiotics. Proc. Fourth Intern. Congr. Biochem., Vienna 1958, 5, 104 (1959).

    Google Scholar 

  • Hahn, F. E.: Inhibition of protein synthesis by antibiotics. Antimicrobial Agents Ann. 1960, 310 (1961).

    Google Scholar 

  • Hahn, F. E., and C. L. Wisseman, JR.: Inhibition of adaptive enzyme formation by antimicrobial agents. Proc. Soc. Exptl. Biol. Med. 76, 533 (1951).

    CAS  Google Scholar 

  • Hash, J. H.: Effects of tetracyclines on the incorporation of C14-alanine into Staphylococcus aureus. Federation Proc. 22, 301 (1963).

    Google Scholar 

  • Hash, J. H., and M. C. Davies: Electron microscopy of Staphylococcus aureus treated with tetracycline. Science 138, 828 (1962).

    PubMed  CAS  Google Scholar 

  • Hash, J. H., M. Wishnick, and P. A. Miller: On the mode of action of the tetracycline antibiotics in Staphylococcus aureus. J. Biol. Chem. 239, 2070 (1964).

    PubMed  CAS  Google Scholar 

  • Hayano, M.: Action of antibiotics and other substances on the formation of streptolysin S by Streptococcus hemolyticus. Japan, J. Bacteriol. 7, 319 (1952).

    CAS  Google Scholar 

  • Herrell, W. E., F. R. Heilman, and W. E. Wellman: Some bacteriologic, pharmacologic, and clinical observations on Terramycin. Ann. N.Y. Acad. Sci. 53, 448 (1950).

    PubMed  CAS  Google Scholar 

  • Hierowski, M.: Inhibition of protein synthesis by chlortetracycline in the E. coli in vitro system. Proc. Natl. Acad. Sci. U.S. 53, 594 (1965).

    CAS  Google Scholar 

  • Hinton, N. A., and J. H. Orr: The effect of antibiotics on the toxin production of Staphylococcus aureus. Antibiotics Chemotherapy 10, 758 (1960).

    PubMed  CAS  Google Scholar 

  • Hobby, G. L.: The mode of action of Terramycin and Aureomycin. Bacteriol. Rev. 17, 29 (1953).

    Google Scholar 

  • Holmes, I. A., and D. G. Wild: The synthesis of ribonucleic acid during inhibition of Escherichia coli by chlortetracycline. Biochem. J. 97, 277 (1965).

    PubMed  CAS  Google Scholar 

  • Hooser, L. E., E. V. Davis, M. L. Moore, and R. A. Siem: Elimination of pleuropneumonia-like organisms from embryonic human lung tissue culture with tetracycline. J. Bacteriol. 87, 237 (1964).

    PubMed  CAS  Google Scholar 

  • Huguchi, T., and S. Bolton: The solubility and complexing properties of oxytetracycline and tetracycline. Iii. Interactions in aqueous solution with model compounds, biochemicals, metals, chelates, and hexametaphosphate. J. Am. Pharm. Assoc. Sci. 48, 557 (1959).

    Google Scholar 

  • Humoller, F. L., and H. J. Zimmerman: Factors influencing betaine aldehyde oxidase activity of rat livers. Am. J. Physiol. 177, 279 (1954).

    PubMed  CAS  Google Scholar 

  • Izaki, K., and K. Arima: Disappearance of oxytetracycline accumulation in the cells of multiple drug-resistant Escherichia coli. Nature 200, 384 (1963).

    PubMed  CAS  Google Scholar 

  • Jackson, F. L.: Mode of action of tetracyclines. In: Experimental Chemotherapy (ed. R. J. Schnitzer and F. Hawking), vol. I II. New York and London: Academic Press 1964.

    Google Scholar 

  • Johnson, E. J., and A. R. Colmer: The relation of magnesium ion to the inhibition of the respiration of Azotobacter vinelandii by chlortetracycline, tetracycline, and 2,4-dichlorrophenoxyacetic acid. Antibiotics Chemotherapy 7, 521 (1957).

    CAS  Google Scholar 

  • Jones, J. G., and G. A. Morrison: The bacteriostatic actions of tetracycline and oxytetracycline. J. Pharm. Pharmacol. 14, 808 (1962).

    PubMed  CAS  Google Scholar 

  • JoNEs, J. G., and G. A. Morrison: Inhibitions by tetracycline and oxytetracycline of the consumption of pyruvate by Aevobacter aerogenes. J. Pharm. Pharmacol. 15, 34 (1963).

    PubMed  CAS  Google Scholar 

  • Karp, A., and J. C. Snyder: In vitro effect of Aureomycin, Terramycin and chlor- amphenicol on typhus rickettsiae. Proc. Soc. Exptl. Biol. Med. 79, 216 (1952).

    CAS  Google Scholar 

  • Katagiri, H., T. Tochikura, and Y. Suzuxl: Microbiological studies of coli-aerogenes bacteria. VI. The action of antibiotics on bacterial respiration and a-ketoglutaric acid fermentation. Bull. Agr. Chem. Soc. Japan 23, 322 (1959).

    CAS  Google Scholar 

  • Katagiri, H., Y. Suzuxl, and T. Tochikura: Studies on the action of antibiotics on bacterial metabolism. II. Effect of dihydrostreptomycin, chloramphenicol and oxytetracycline upon the aerobic carbohydrate metabolism by Escherichia coli. J. Antibiotics (Japan), Ser. A 13, 155 (1960).

    CAS  Google Scholar 

  • Katagiri, H., Y. Suzuxl, and T. Tochikura: Studies on the action of antibiotics on bacterial metabolism. Vii. Tetracyclines and bacterial respiration. Antibiotics (Japan), Ser. A 14, 134 (1961).

    CAS  Google Scholar 

  • Kindler, S. H., J. Mager, and N. GrossowIcz: Toxin production by Clostridium parabotulinum type A. J. Gen. Microbiol. 15, 394 (1956).

    PubMed  CAS  Google Scholar 

  • Kirby, W. M. M., C. E. Roberts, and R. E. Burdick: Comparison of two new tetracyclines with tetracycline and demethylchlortetracycline. Antimicrobial Agents and Chemotherapy 1961, 286 (1961).

    Google Scholar 

  • KoHN, K. W.: Mediation of trivalent metal ions in the binding of tetracycline to macromolecules. Nature 191, 1156 (1961).

    Google Scholar 

  • Korotyaev, A. I.: Effect of antibiotics on pyruvate consumption by resting cells of Escherichia coli. Mikrobiologiya 31, 24 (1962).

    CAS  Google Scholar 

  • Kraskin, K. S., and A. M. Stern: Terramycin inhibition of gluconate oxidation by Escherichia coli. J. Bacteriol. 73, 608 (1957).

    PubMed  CAS  Google Scholar 

  • Laskin, A. I., and W. M. Chan: Inhibition by tetracyclines of polyuridylic acid directed phenylalanine incorporation in Escherichia coli cell-free systems. Biochem. Biophys. Research Commun. 14, 137 (1964).

    CAS  Google Scholar 

  • Laskin, A. I., and W. M. Chan: The effects of vernamycins on aminoacyl-transfer Rna binding to Escherichia coli ribosomes. Antimicrobial Agents and Chemotherapy 1965, 321 (1966).

    Google Scholar 

  • Last, J. A.: Personal communication 1965.

    Google Scholar 

  • Last, J. A., K. Izaki, and J. F. Snell: The failure of tetracycline to bind Escherichia coli ribosomes. Biochim. et Biophys. Acta 103, 534 (1965).

    Google Scholar 

  • Leibfried, E. L.: The effect of streptomycin and chlortetracycline on catalase and certain dehydrogenases of Escherichia coli and Shigella. Antibiotiki 2, 21 (1957).

    Google Scholar 

  • Little, P. A., J. J. Oleson, and J. H. Williams: Factors influencing the sensitivity of protozoa to antibiotics. Antibiotics it Chemotherapy 3, 29 (1953).

    CAS  Google Scholar 

  • Loomis, W. F.: On the mechanism of action of Aureomycin. Science 111, 474 (1950).

    PubMed  CAS  Google Scholar 

  • Malek, P., J. Rokos, M. Burger, J. Kolc, and P. Prochazka: The effect of antibiotics of the teteracycline group on enzymes and the practical clinical significance thereof. In: Antibiotics Ann. 1958/59, 221 (1959).

    Google Scholar 

  • Mandlestam, J., and H. J. Rogers: The incorporation of amino acids into the cell-wall mucopeptide of staphylococci and the effect of antibiotics on the process. Biochem. J. 72, 654 (1959).

    Google Scholar 

  • Marsh, C. L., and G. W. Kelley: Studies in helminth enzymology. H. Properties of an inorganic pyrophosphatase from A scaridia galli, a nematode parasite of chickens. Exptl. Parasitol. 8, 274 (1959).

    CAS  Google Scholar 

  • Mccormick, J. R. D., N. O. Sjolander, U. Hirsch, E. R. Jensen, and A. P. Doerschuk: A new family of antibiotics: the demethyltetracyclines. J. Am. Chem. Soc. 79, 4561 (1957).

    CAS  Google Scholar 

  • Mccormick, J. R. D., E. R. Jensen, P. A. Miller, and A. P. Doerschuk: The 6-deoxytetracyclines: Further studies on the relationship between structure and antibacterial activity in the tetracycline series. J. Am. Chem. Soc. 82, 3381 (1960).

    CAS  Google Scholar 

  • MccuLlough, N. B., and G. A. Beal: Antimetabolic action of sulfadiazine and certain antibiotics for brucella. J. Infectious Diseases 90, 196 (1952).

    Google Scholar 

  • Melnykovych, G., and K. R. Johansson: Effects of chlortetracycline on the stability of arginine decarboxylase in Escherichia coli. J. Bacteriol. 77, 638 (1959).

    PubMed  CAS  Google Scholar 

  • Melnykovych, G., and E. E. Snell: Nutritional requirements for the formation of arginine decarboxylase in Escherichia coli. J. Bacteriol. 76, 518 (1958).

    PubMed  CAS  Google Scholar 

  • Michel, M., and A. C. FranÇOis: Influence de la chlortetracycline sur les decarboxylase de la flore intestinale du porc. Comp. rend. 242, 1770 (1956).

    CAS  Google Scholar 

  • Miura, Y., Y. Nakamura, H. Matsudaira, and T. Komeiji: The mode of action of Terramycin. Antibiotics Chemotherapy 2, 152 (1952).

    CAS  Google Scholar 

  • Miura, Y., Y. Nakamura, Y. Yoshizawa, and H. Matsudaira: Comparative studies on the phosphorus metabolism of staphylococci in the presence of chlortetracycline and oxytetracycline. Antibiotics Chemotherapy 3, 822 (1953).

    Google Scholar 

  • MoRoz, A. F., and I. V. Shibaeva: The effect of levomycetin and chlortetracycline on the dehydrogenase activity of staphylococci sensitive and resistant to these antibiotics. Antibiotiki 9, 232 (1964).

    Google Scholar 

  • Mulli, K., K. Uhlenbroock u. L. Ludwig: Zum wirkungsmechanismus des Aureomycin. Arzneimittel-Forsch. 3, 559 (1953).

    CAS  Google Scholar 

  • Nakaya, R., and H. P. Treffers: The growth rates and adaptive enzyme activities of chloramphenicol-and oxytetracycline-resistant Escherichia coli. Antibiotics Ann. 1958/59, 865 (1959).

    Google Scholar 

  • Netien, G., P. Hutinel, and O. Sotty: Action de l’auréomycine et de la terramycine sur la biogénèse de la chlorophylle au cours de la germination. Compt. rend. soc. biol. 146, 1337 (1952).

    CAS  Google Scholar 

  • Nikolov, T. K., and A. T. Ilkov: Effect of chlortetracycline on methionine-35S incorporation into macroorganism proteins. Abstracts of Communications, V. Internat. Congr. Biochem. (Moscow) 1961, p. 44.

    Google Scholar 

  • Nirenberg, M., and P. Leder: Rna codewords and protein synthesis. The effect of trinucleotides upon the binding of sRna to ribosomes. Science 145, 1399 (1964).

    PubMed  CAS  Google Scholar 

  • Okamato, S., and D. Mizuno: Mechanism of chloramphenicol and tetracycline resistance in Escherichia coli. J. Gen. Microbiol. 35, 125 (1964).

    Google Scholar 

  • Olitzki, A. L.: Hydrogen sulfide production by non-multiplying organisms and its inhibition by antibiotics. J. Gen. Microbiol. 11, 160 (1954).

    PubMed  CAS  Google Scholar 

  • Osteux, R., et J. Laturaze: Mode d’action des antibiotiques: Antagonisme entre le groupe auréomycin-chloromycétine-terramycine et la biotine chez Clostridium welchii. Compt. rend. 234, 677 (1952).

    CAS  Google Scholar 

  • Osteux, R., J. Laturaze et J.Mack: Action inhibitrice de l’auréomycine sur la respiration bactérienne et l’oxydation des acides du cycle citrique. Compt. rend. 235, 554 (1952).

    CAS  Google Scholar 

  • Pansy, F. E., P. Kahn, J. F. Pagano, and R. DoxovucK: The relationship between Aureomycin, chloramphenicol and Terramycin. Proc. Soc. Exptl. Biol. Med. 75, 618 (1950).

    CAS  Google Scholar 

  • Park, J. T.: Inhibition of cell-wall synthesis in Staphylococcus aureus by chemicals which cause accumulation of wall precursors. Biochem. J. 70, 2P (1958).

    Google Scholar 

  • Porfirieva, R. P.: The influence of chlortetracycline on urea formation in the liver. Antibiotiki 6, 127 (1961).

    Google Scholar 

  • Porro, A., e SoNcin: Antibiotici e ossidazione dell’acido acetacetico prodotta dall’ E. coli. Arch. intern. pharmacodynamie 95, 64 (1953a).

    CAS  Google Scholar 

  • Porro, A., e E. Soncin: Antibiotici e ossidazione dell’acido acetoacetico prodotta dai tessuti. Arch. intern. pharmacodynamie 95, 497 (1953b).

    CAS  Google Scholar 

  • Porro, A., e E. SoNcin: Azione di alcuni antibiotici sul metabolismo dell’acido glutammico nell’E. coli. Arch. intern. pharmacodynamie 99, 481 (1954).

    CAS  Google Scholar 

  • Price, K. E., Z. Zolli, JR., J. C. Atkinson, and H. G. Luther: Antibiotic antagonists. I. The effect of certain milk constituents. Antibiotics Chemotherapy 7, 672 (1957a).

    CAS  Google Scholar 

  • Price, K. E., Z. Zolli, JR., J. C. Atkinson, and H. G. Luther: Antibiotic antagonists. II. Mode of inhibitory action of divalent cations for oxytetracycline. Antibiotics Chemotherapy 7, 689 (1957b).

    CAS  Google Scholar 

  • Reedy, R. J., W. A. Randall, and H. Welch: Variations in the antimicrobial activity of the tetracyclines. II. Antibiotics Chemotherapy 5, 115 (1955).

    CAS  Google Scholar 

  • Rege, D. V., and A. Sreenivasan: Influence of folic acid and vitamin B12 on the impairment of nucleic acid synthesis in Lactobacillus casei by Aureomycin. Nature 173, 728 (1954).

    PubMed  CAS  Google Scholar 

  • Regna, P. P., I. A. Solomons, K. Murai, A. E. Timreck, K. J. Brunings, and W. A. Lazier: The isolation and general properties of Terramycin and Terramycin salts. J. Am. Chem. Soc. 73, 4211 (1951).

    CAS  Google Scholar 

  • Rendi, R., and S. Ochoa: Enzyme specificity in activation and transfer of amino acids to ribonucleoprotein particles. Science 133, 1367 (1961).

    Google Scholar 

  • Rendi, R., and S. Ochoa: Effect of chloramphenicol on protein synthesis in cell-free preparations of Escherichia coli. J. Biol. Chem. 237, 3711 (1962).

    PubMed  CAS  Google Scholar 

  • RoKos, J., M. Burger, and P. Prochazka: Effect of calcium ions on the inhibition of hydrolases by chlortetracycline. Nature 181, 1201 (1958).

    PubMed  CAS  Google Scholar 

  • RoKos, J., M. Burger, and P. Prochazka: Effect of chlortetracycline on the activity of a-amylases. Antibiotiki 4, 3 (1959a).

    PubMed  Google Scholar 

  • Roxos, J., P. Malek, M. Burger, P. ProchÂZka, and J. KoLc: The effect of divalent metals on the inhibition of pancreatic lipase by chlortetracycline. Antibiotics Chemotherapy 9, 600 (1959b).

    Google Scholar 

  • Sakaguchi, G., S. Sakaguchi, T. Kawabata, Y. Nakamura, T. Akano, and K. Shiromizu: Influence of oxytetracycline upon the toxin production of type E Clostridium botulinum. J.pan J. Med. Sci. Biol. 13, 13 (1960).

    CAS  Google Scholar 

  • Saz, A. K., and J. Marmur: The inhibition of organic nitro-reductase by Aureomycin in cell-free extracts. Proc. Soc. Exptl. Biol. Med. 82, 783 (1953).

    CAS  Google Scholar 

  • Saz, A. K., and L. M. Martinez: Enzymatic basis of resistance to Aureomycin. I. Differences between flavoprotein nitro reductase of sensitive and resistant Escherichia coli. J. Biol. Chem. 223, 285 (1956).

    CAS  Google Scholar 

  • Saz, A. K., and L. M. Martinez: Enzymatic basis of resistance to Aureomycin. H. Inhibition of electron transport in Escherichia coli by Aureomycin. J. Biol. Chem. 233, 1020 (1958).

    CAS  Google Scholar 

  • Saz, A. K., and R. B. Slie: Inhibition of organic nitro reductase by chlortetracycline in bacterial cell-free extracts. Antibiotics Ann. 1953/54, 303 (1953a).

    Google Scholar 

  • Saz, A. K., and R. B. Slie: Manganese reversal of Aureomycin inhibition of bacterial cell-free nitro-reductase. J. Am. Chem. Soc. 75, 4626 (1953b).

    CAS  Google Scholar 

  • Saz, A. K., and R. B. Slie: The inhibition of organic nitro-reductase by Aureomycin in cell-free extracts. II. Cofactor requirements for the nitro-reductase enzyme complex. Arch. Biochem. Biophys. 51, 5 (1954a).

    PubMed  CAS  Google Scholar 

  • Saz, A. K., and R. B. Slie: Reversal of Aureomycin inhibition of bacterial cell-free nitro reductase by manganese. J. Biol. Chem. 210, 407 (1954b).

    PubMed  CAS  Google Scholar 

  • Saz, A. K., L. W. Brownell, and R. B. Slie: Aureomycin-resistant cell-free nitroreductase from aureomycin-resistant Escherichia coli. J. Bacteriol. 71, 421 (1956).

    PubMed  CAS  Google Scholar 

  • Shahani, K. M.: Carbohydrate and pyruvate metabolism of oxytetracycline-sensitive and oxytetracycline-resistant organisms. Antibiotics Ann. 1956/57, 523 (1957).

    Google Scholar 

  • Slims, M. E.: Some metabolic aspects of tetracyclines. Clin. Pharmacol. Therap. 3, 321 (1962).

    Google Scholar 

  • Sloane, N. H.: Biological activity of a metabolite of p-aminobenzoic acid (Paba) in a hydroxylating system. J. Am. Chem. Soc. 75, 6352 (1953).

    CAS  Google Scholar 

  • Snell, J. F., and L. Cheng: Studies in metabolic spectra. II. Application of metabolic spectra to the investigation of the mode of action of oxytetracycline. Antibiotics Ann 1957/58, 538 (1958).

    Google Scholar 

  • Snell, J. F., and L. Cheng: Studies in metabolic spectra. Iii. The accumulation of D-glutamic acid in oxytetracycline-treated Escherichia coli. Antibiotics Chemotherapy 9, 159 (1959).

    Google Scholar 

  • Snell, J. F., and L. Cheng: Studies on modes of action of tetracycline. (II). Develop. Ind. Microbiol. 2, 107 (1961).

    Google Scholar 

  • Snell, J. F., F. Z. Thanassi, and D. A. Sypowtcz: Studies in metabolic spectra. I. Mode of action of tetracycline antibiotics. Antibiotics Chemotherapy 8, 57 (1958).

    CAS  Google Scholar 

  • Soncin, E.: Fenomeni di interferenza tra elettroliti e antibiotici. Iii. Ione magnesio e aureomycina, terramicina, chloramfenicolo. Arch. intern. pharmacodynamie 94, 346 (1953).

    CAS  Google Scholar 

  • Spector, W. S. (ed.): Handbook of toxicology. Philadelphia: W. B. Saunders Co. 1957.

    Google Scholar 

  • Srikantan, T. N., S. C. Agarwala, and D. L. Shrivastava: Studies in the enzyme make-up of Pasteurella pestis. Iii. Oxidative metabolism of virulent and avirulent strains. Indian J. Med. Research 45, 151 (1957).

    CAS  Google Scholar 

  • Srikantan, T. N., C. R. Krishna Murti, and D. L. Shrivastava: Studies on the enzyme make-up of Pasteurella pestis. VI. Aldolase activity of virulent and avirulent strains. Indian J. Med. Research 46, 1 (1958).

    CAS  Google Scholar 

  • Stanecki, J., J. Fast, and T. Krzywy: Inactivation of the bacteriostatic action of chlortetracycline by substances produced by bacterial metabolism. Antibiotics Chemotherapy 8, 167 (1958).

    Google Scholar 

  • Stephens, C. R., K. Murai, K. J. Brunings, and R. B. Woodward: Acidity constants of the tetracycline antibiotics. J. Am. Chem. Soc. 78, 4155 (1956).

    CAS  Google Scholar 

  • Suarez, G., and D. Nathans: Inhibition of aminoacyl-sRna binding to ribosomes by tetracycline. Biochem. Biophys. Research Commun. 18, 750 (1965).

    Google Scholar 

  • Tanner, J.: Contribution a l’étude de l’action des antibiotiques sur l’immunité. Action de la tetracycline sur les antigènes de Salmonella typhi. Ann. inst. Pasteur 98, 772 (1960).

    CAS  Google Scholar 

  • Traut, R. R., and R. E. MoNro: The puromycin reaction and its relation to protein synthesis. J. Mol. Biol. 10 63 (1964).

    PubMed  CAS  Google Scholar 

  • Umbreit, W. W.: Mechanisms of antibacterial action. Pharmacol. Revs 5, 275 (1953).

    CAS  Google Scholar 

  • Van Meter, J. C., and J. J. Oleson: Effect of Aureomycin on the respiration of normal rat liver homogenates. Science 113, 273 (1951).

    Google Scholar 

  • Van Meter, J. C., A. Spector, J. J. Oleson, and J. H. Williams: In vitro action of Aureomycin on oxidative phosphorylation in animal tissues. Proc. Soc. Exptl. Biol. Med. 81, 215 (1952).

    Google Scholar 

  • Vazquez, D.: Antibiotics which effect protein synthesis: The up-take of 14C-chloramphenicol by bacteria. Biochem. Biophys. Research Commun. 12, 409 (1963).

    CAS  Google Scholar 

  • Vazquez, D.: The binding of chloramphenicol by ribosomes from Bacillus megaterium. Biochem. Biophys. Research Commun. 15, 464 (1964).

    CAS  Google Scholar 

  • Vinter, V.: Spores of microorganisms. X. Interference of tetracycline antibiotics with sporogenesis of bacilli. Folia Microbiol. 7, 275 (1962).

    CAS  Google Scholar 

  • Vonk, M. A., L. W. Mcelroy, and R. T. Berg: The effect of ingested chlortetracycline on some hydrolases and organs associated with the digestive process in growing pigs. I. Assay methods for protease, amylase, and cellulase activity. Can. J. Biochem. and Physiol. 35, 181 (1957).

    CAS  Google Scholar 

  • Vyshepan, E. D., and V. S. Zueva: The effect of chlortetracycline on the enzymatic hydrolysis of adenosinetriphosphoric acid. Biokhimiya 24, 833 (1959).

    CAS  Google Scholar 

  • Wagner, W. H.: Über den hemmenden Einfluß von Aureomycin auf den oxydativen Abbau aromatischer Substanzen durch saprophytare Mycobakterien. Naturwissenschaften 22, 525 (1950).

    Google Scholar 

  • Waksman, S. A., and H. Lechevalier: Modes of action of antibiotics. In: The actinomycetes, vol. 3. Baltimore: Williams Wilkins Co. 1962.

    Google Scholar 

  • Warner, J. R., and A. Rich: The number of soluble Rna molecules on reticulocyte ribosomes. Proc. Nat. Acad. Sci. U.S. 51, 1134 (1964).

    CAS  Google Scholar 

  • Watanabe, T., and T. Fukasawa: Episome-mediated transfer of drug resistance in Enterobacteriaceae. I. Transfer of resistance factors by conjugation. J. Bacteriol. 81, 669 (1961).

    PubMed  CAS  Google Scholar 

  • Weil, A. J.: Inhibition of pigment formation of Serratia marcescens by chloramphenicol, Aureomycin and Terramycin. Proc. Soc. Exptl. Biol. Med. 79, 539 (1952).

    CAS  Google Scholar 

  • Weinberg, E. D.: The reversal of the toxicity of oxytetracycline (Terramycin) by multivalent cations. J. Infectious Diseases 95, 291 (1954a).

    CAS  Google Scholar 

  • Weinberg, E. D.: The influence of inorganic salts on the activity in vitro of oxytetracycline. Antibiotics Chemotherapy 4, 35 (1954b).

    CAS  Google Scholar 

  • Weinberg, E. D.: The effect of Mn++ and antimicrobial drugs on sporulation of Bacillus subtilis in nutrient broth. J. Bacteriol. 70, 289 (1955a).

    PubMed  CAS  Google Scholar 

  • Weinberg, E. D.: Futher studies on metallic ion reversal of oxytetracycline; reactivation of drug-inactivated cells by Mg++. Antibiotics Ann. 1954/55, 169 (1955b).

    Google Scholar 

  • Weinberg, E. D.: The mutual effects of antimicrobial compounds and metallic cations. Bacteriol. Rev. 21, 46 (1957).

    PubMed  CAS  Google Scholar 

  • Weisberger, A. S., S. Wolfe, and S. Armentrout: Inhibition of protein synthesis in mammalian cell-free systems by chloramphenicol. J. Exptl. Med. 120, 161 (1964).

    CAS  Google Scholar 

  • Welch, H., W. A. Randall, R. J. Reedy, and E. J. Oswald: Variations in antimicrobial activity of the tetracyclines. Antibiotics Chemotherapy 4, 741 (1954).

    CAS  Google Scholar 

  • Wolfe, A. D., and F. E. Hahn: Influence of inhibitors of protein synthesis on the messenger-directed binding of amino acyl-s-Rna to ribosomes. Federation Proc. 24, 217 (1965a).

    Google Scholar 

  • Wolfe, A. D., and F. E. Hahn: Mode of action of chloramphenicol. IX. Effects of chloramphenicol upon a ribosomal amino acid polymerization system and its binding to bacterial ribosomes. Biochim. et Biophys. Acta 95, 146 (1965b).

    CAS  Google Scholar 

  • Wong, D. T. O., S. Barban, and S. J. Ajl: Inhibition of respiration by Aureomycin and Terramycin. Antibiotics Chemotherapy 3, 607 (1953).

    CAS  Google Scholar 

  • Wright, S. S., and M. Finland: Cross-resistance among three tetracyclines. Proc. Soc. Exptl. Biol. Med. 85, 40 (1954).

    CAS  Google Scholar 

  • Yagi, K., J. Okuda, T. Ozawa, and K.Okada: Inhibitory mechanism of chlortetracycline on D-amino acid oxidase. Science 124, 273 (1956).

    PubMed  CAS  Google Scholar 

  • Yagi, K., J. Okuda, T. Ozawa, and K. Okada: Mechanism of inhibition of D-amino acid oxidase. I. Inhibitory action of chlortetracycline. Biochim. et Biophys. Acta 34, 372 (1959).

    CAS  Google Scholar 

  • Yee, R. B., and H. M. Gezon: Ribonucleic acid of chloramphenicol-treated Shigella flexneri. J. Gen. Microbiol. 32, 299 (1963).

    PubMed  CAS  Google Scholar 

  • Yee, R. B., S.F. Pan, and H. M. Gezon: Studies on the metabolism of Shigella. Iii. The inhibition of the oxidation of glutamate by Aureomycin. J. Bacteriol. 75, 56 (1958).

    PubMed  CAS  Google Scholar 

  • Yokota, T., and T. Akiba: Studies on the mechanism of transfer of drug resistance in bacteria. 22. Influence of chloramphenicol and tetracycline on the 14C-amino acid incorporation by ribosomes isolated from the drug sensitive and multiple resistant strain of E. coli. Med. and Biol. (Japan) 64, 9 (1962a).

    Google Scholar 

  • Yokata, T., and T. Akiba: Studies on the mechanism of transfer of drug resistance in bacteria. 23. Mechanisms of the antibacterial action of tetracycline and the tetracycline resistance in the artificial, TC-resistant strain of E. coli. Med. and Biol. (Japan) 64, 39 (1962b).

    Google Scholar 

  • Younathan, E. S., and S. S. Barkulis: Effect of some antimetabolites on the production of streptolysin S’. J. Bacteriol. 74, 151 (1957).

    PubMed  CAS  Google Scholar 

  • Zimmerman, H. J., and F. L. Humoller: Effect of Aureomycin on choline oxidase and other enzyme systems of rat liver. Am. J. Physiol. 175, 468 (1953).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laskin, A.I. (1967). Tetracyclines. In: Gottlieb, D., Shaw, P.D. (eds) Antibiotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-38439-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-38439-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-37649-2

  • Online ISBN: 978-3-662-38439-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics