Advertisement

Antibiotics pp 331-359 | Cite as

Tetracyclines

  • Allen I. Laskin

Abstract

The tetracyclines are the prototypes of the broad spectrum antibiotics, so-called because they inhibit the growth of a wide range of microorganisms, including many gram-positive and gram-negative bacteria, species of rickettsia and mycoplasma (PPLO), certain protozoa and large viruses. In Table 1 are listed some representative data on the minimum inhibitory concentration (M.I.C.) of the tetracyclines, in μg/ml, against a variety of microorganisms.

Keywords

Protein Synthesis Scrub Typhus Tetracycline Antibiotic Amino Acid Incorporation Membrane Filter Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agarwala, S. C., C. R. Krishna Murti, and D. L. Shrivastava: Studies on enzyme inhibition in relation to drug action. I. Effect of certain antibiotics on urease. J. Sci. Ind. Research (India) 11B, 1965 (1952).Google Scholar
  2. Ajl, S.: As cited in: Symposium on the mode of action of antibiotics. Bacteriol. Rev. 17, 17 (1953).Google Scholar
  3. Albert, A.: Avidity of Terramycin and Aureomycin for metallic cations. Nature 172, 201 (1953).PubMedGoogle Scholar
  4. Albert, A.: Metal binding in chemotherapy: The activation of metals by chelation. In: The strategy of chemotherapy. Eighth Symposium of the Society for General Microbiology, Cambridge, England, 1958, p. 112.Google Scholar
  5. Albert, A., and C. W. Rees: Avidity of the tetracyclines for the cations of metals. Nature 177, 433 (1956).PubMedGoogle Scholar
  6. Alexander, B.: Effect of chlortetracycline on vitamin BB and amino acid decarboxylase in bacteria from the alimentary tract of the chick. Appl. Microbiol. 8, 69 (1960).PubMedGoogle Scholar
  7. Altenbern, R. A.: The action of Aureomycin on the Escherichia coli bacteriophage T3 system. J. Bacteriol. 65, 288 (1953).PubMedGoogle Scholar
  8. Arima, K., and K. IzAki: Accumulation of oxytetracycline relevant to its bacteriocidal action in the cells of Escherichia coli. Nature 200, 192 (1963).PubMedGoogle Scholar
  9. Arlinghaus, R., J. Shaeffer, and R. Schweet: Mechanism of peptide bond formation in polypeptide synthesis. Proc. Natl. Acad. Sci. U.S. 51, 1291 (1964).Google Scholar
  10. Arora, K. L., and C. R. Krishna Murti: Enzyme inhibition studies in relation to drug action. VI. Action of certain antibacterial agents on the succinic oxidase system J. Sci. Ind. Research (India) 13B, 482 (1954).Google Scholar
  11. Arora, K. L., and C. R. Krishna Murti: Enzyme inhibition in relation to drug action. Vii. Action of certain antibacterial agents on tryptophanase J Sci. Ind. Research (India) 14C, 6 (1955a).Google Scholar
  12. Arora, K. L., and C. R. Krishna Murti: Enzyme inhibition studies in relation to drug action. Viii. Action of certain antibacterial agents on the tricarboxylic acid cycle of Vibrio comma. J. Sci. Ind. Research (India) 14C, 66 (1955b).Google Scholar
  13. Arora, K. L., and C. R. Krishna Murti: Enzyme inhibition studies in relation to drug action. IX. Action of certain antibacterial agents on catalase. J. Sci. Research (India) 19C, 103 (1960).Google Scholar
  14. Bachrach, U., M. Segal, and R. Rozansky: Effect of tetracyclines on formation of amines by bacteria. Proc. Soc. Exptl. Biol. Med. 97, 874 (1958).Google Scholar
  15. Belding, M., and F. Kern, JR.: Inhibition of urease by oxytetracycline. J. Lab. Clin. Med. 61, 560 (1963).PubMedGoogle Scholar
  16. Benbough, J., and G. A. Morrison: Bacteriostatic actions of some tetracyclines. J. Pharm. and Pharmacol. 17, 409 (1965).Google Scholar
  17. Bernheim, F.: The effect of certain antibiotics on the formation of an adaptive enzyme in a strain of Pseudomonas aeruginosa. J. Pharmacol. Exptl. Therap. 110, 115 (1954a).Google Scholar
  18. Bernheim, F.: The effect of certain metal ions and chelating agents on the formation of an adaptive enzyme in Pseudomonas aeruginosa. Enzymologia 16, 351 (1954b).PubMedGoogle Scholar
  19. Bernheim, F., and W. E. DE Turk: The effect of chloramphenicol and certain other drugs on the oxidation of aromatic amino acids by a strain of Pseudomonas aeruginosa. J. Pharmacol. Exptl. Therap. 105, 246 (1952).Google Scholar
  20. Bernheim, F., and W. E. DE Turk: An aerobic cysteine desulfurase in a mycobacterium. Enzymologia 16, 69 (1953a).PubMedGoogle Scholar
  21. Bernheim, F., and W. E. DE Turk: Factors which affect the oxidation of benzoic acid by a strain of Pseudomonas aeruginosa. J. Bacteriol. 65, 65 (1953b).PubMedGoogle Scholar
  22. Bohonos, N., A. C. Dornbush, L. I. Feldman, J. H. Martin, E. Pelcak, and J. H. Williams: In vitro studies with chlortetracycline, oxytetracycline and tetracycline. Antibiotics Ann. 1953 /54, 49 (1953).Google Scholar
  23. Brock,T. D.: Inhibition of endotrophic sporulation by antibiotics. Nature 195, 309 (1962).PubMedGoogle Scholar
  24. Brock, T. D.: Effect of antibiotics and inhibitors on M protein synthesis. J. Bacteriol. 85, 527 (1963).PubMedGoogle Scholar
  25. Brody, T. M., and J. A. Bain: The effect of Aureomycin and Terramycin on oxidative phosphorylation. J. Pharmacol. Exptl. Therap. 103, 388 (1951).Google Scholar
  26. Brody, T. M., R. Hurwitz, and J. A. Bain: Magnesium and the effect of the tetracycline antibiotics on oxidative processes in mitochondria. Antibiotics Chemotherapy 4, 864 (1954).Google Scholar
  27. CernŸ, R., and V. Habermann: On the effects of tetracycline on the biosynthesis of proteins and nucleic acids with Escherichia coli and Bacillus cereus. Collection Czech Chem. Commun. 29, 1326 (1964).Google Scholar
  28. Chandler, C. A., V. Z. Davidson, P. H. Long, and J. J. Monnier: Studies On resistance of staphylococci to penicillin: The production of penicillinase and its inhibition by the action of aureomycin. Bull. Johns Hopkins Hosp. 89, 81 (1951).PubMedGoogle Scholar
  29. Chandler, C. A., and E. Von Der Galtz: Studies of the effect of aureomycin on the production of penicillinase by staphylococci. Bull. Johns Hopkins Hosp. 91, 475 (1952).PubMedGoogle Scholar
  30. Cheng, L., and J. F. Snell: Studies in metabolic spectra. IV. Effects of tetracyclines, some of their derivatives, and chloramphenicol on accumulation of glutamic acid in Escherichia coli. J. Bacteriol. 83, 711 (1962).PubMedGoogle Scholar
  31. Ciak, J., and F. E. Hahn: Mechanisms of action of antibiotics. I. Additive action of chloramphenicol and tetracyclines on the growth of Escherichia coli. J. Bacteriol. 75, 125 (1958).PubMedGoogle Scholar
  32. Clark, JR., J. M., and A. Y. Chang: Inhibitors of the transfer of amino acids from aminoacyl soluble ribonucleic acid to proteins. J. Biol. Chem. 240, 4734 (1965).Google Scholar
  33. Colaizzi, J. L., A. M. Knevel, and A. N. Martin: Biophysical study of the mode of action of the tetracycline antibiotics. J. Pharm. Sci. 54, 1425 (1965).PubMedGoogle Scholar
  34. Connamacher, R. H., and H G Mandel: Binding of tetracycline to the 30 S ribosomes and to polyuridylic acid. Biochem. Biophys. Research Commun. 20, 98 (1965).Google Scholar
  35. Conover, L. H.: In: Symposium on Antibiotics and Mould Metabolites. Chem. Soc. Special Publication No. 5, p. 48. London, England 1956.Google Scholar
  36. Creaser, E. H.: The induced (adaptive) biosynthesis of ß-galactosidase in Staphylococcus aureus. J. Gen. Microbiol. 12, 288 (1955).PubMedGoogle Scholar
  37. Delamater, E. D., M. E. Hunter, W. Szybalski, and V. Bryson: Chemically induced aberrations of mitosis in bacteria. J. Gen. Microbiol. 12, 203 (1955).PubMedGoogle Scholar
  38. Dellove, JR., B., S. S. Wright, E. M. Purcell, T. W. Mou, and M. Finland: Antibacterial action of tetracycline: Comparisons with oxytetracycline and chlortetracycline. Proc. Soc. Exptl. B.ol. Med. 85, 25 (1954).Google Scholar
  39. DoLuisio, J. T., and A. N. Martin: Metal complexation of the tetracycline hydrochlorides. J. Med. Chem. 6, 16 (1963).PubMedGoogle Scholar
  40. Doughty, C. C., and J. A. Hayashi: Enzymatic properties of a phage-induced lysin affecting group A streptococci. J. Bacteriol. 83, 4058 (1962).Google Scholar
  41. Eagle, H., and A. K. Saz: Antibiotics. Ann. Rev. Microbiol. 9, 173 (1955).Google Scholar
  42. Faguet, M., et E. Edlinger: Antibiotiques et lyse bactériophagique. Vii. L’action de l’aureomycin sur la lyse bactériophagique étudiée au microbiophotométre. Ann. inst. Pasteur 80, 281 (1951).Google Scholar
  43. Fedorov, M. V., and I. Segi: Effect of certain antibiotics on the physiological activity of Azotobacter chroococcum. Mikrobiologiya 30, 275 (1961).Google Scholar
  44. Foster, J. W., and R. F. Pittillo: Reversal by complex natural materials of growth inhibition caused by antibiotics. J. Bacteriol. 65, 361 (1953a).PubMedGoogle Scholar
  45. Foster, J. W., and R. F. Pittillo: Metabolite reversal of antibiotic inhibition, especially reversal of Aureomycin inhibition by riboflavin. J. Bacteriol. 66, 478 (1953b).PubMedGoogle Scholar
  46. Franklin, T. J.: The inhibition of protein synthesis by chlortetracycline in cell-free systems. Biochem. J. 84, 110P (1962).Google Scholar
  47. Franklin, T. J.: The inhibition of incorporation of leucine into protein of cell-free systems from rat liver and Escherichia coli by chlortetracycline. Biochem. J. 87, 449 (1963a).PubMedGoogle Scholar
  48. Franklin, T. J.: Absence of effect of chlortetracycline administration on amino acid incorporation and enzyme synthesis in the liver of the intact rat. Biochim. et Biophys. Acta 76, 138 (1963b).Google Scholar
  49. Franklin, T. J.: The effect of chlortetracycline on the transfer of leucine and “transfer” ribonucleic acid to rat-liver ribosomes in vitro. Biochem. J. 90, 624 (1964).PubMedGoogle Scholar
  50. Franklin, T. J., and A. Godfrey: Resistance of Escherichia coli to tetracycline. Biochem. J. 94, 54 (1965).PubMedGoogle Scholar
  51. Freeman, B. A., and R. Circo: Effect of tetracyclines on the intracellular amino acids of molds. J. Bacteriol. 86, 38 (1963).PubMedGoogle Scholar
  52. FusIllo, M. H., and M. J. Romansky: The simultaneous increase in resistance of bacteria to Aureomycin and Terramycin upon exposure to either antibiotic. Antibiotics Chemotherapy 1, 107 (1951).Google Scholar
  53. Fuwa, I.: Inhibition of polynucleotide phosphorylase by tetracycline and its derivatives. J. Antibiotics (Japan), Ser. B 16, 171 (1963).Google Scholar
  54. Gale, E. F.: Mechanisms of antibiotic action. Pharmacol. Rev. 15, 481 (1963).PubMedGoogle Scholar
  55. Gale, E. F., and J. P. FoLkes: The assimilation of amino-acids by bacteria. 15. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem. J. 53, 493 (1953a).PubMedGoogle Scholar
  56. Gale, E. F., and J. P. Folkes: The assimilation of amino-acids by bacteria. 18. The incorporation of glutamic acid into the protein fraction of Staphylococcus aureus. Biochem. J. 55, 721 (1953b).PubMedGoogle Scholar
  57. Gale, E. F., and J. P. Folkes: The assimilation of amino acids by bacteria. 19. The inhibition of phenylalanine incorporation in Staphylococcus aureus by chloramphenicol and p-chlorophenylalanine Biochem. J. 55, 730 (1953c).PubMedGoogle Scholar
  58. Gale, E. F., and J. P. Folkes: The assimilation of amino acids by bacteria. 24. Inhibitors of incorporation of glycine in disrupted staphylococcal cells. Biochem. J. 67, 507 (1957).PubMedGoogle Scholar
  59. Gale, E. F., and T. F. Paine: Effect of inhibitors and antibiotics on glutamic acid accumulation and on protein synthesis in Staphylococcus aureus. Biochem. J. 47, X Xvi (1950).Google Scholar
  60. Gale, E. F., and T. F. Paine: The action of inhibitors and antibiotics on the accumulation of free glutamic acid and the formation of combined glutamate in Staphylococcus aureus. Biochem. J. 48, 298 (1951).PubMedGoogle Scholar
  61. Garrod, L. P., and P. M. Waterworth: The relative merits of the four tetracyclines. Antibiotics Ann. 1959/60, 440 (1960).Google Scholar
  62. Ghatak, S., and C. R. Krishna MuRti: Enzyme inhibition studies in relation to drug action. IV. Action of certain antibiotics on alkaline phosphatase. J. Sci. Ind. Research (India) 12B, 160 (1953).Google Scholar
  63. Gibson, F., and B. Mcdougall: The effect of chloramphenicol and oxytetracycline on the formation of intermediates in tryptophan biosynthesis. Australian J. Exptl. Biol. Med. Sci. 39, 171 (1961).Google Scholar
  64. Gibson, F., B. Mcdougall, M. J. Jones, and H. Teltscher: The action of antibiotics on indole synthesis by cell suspensions of Escherichia coli. J. Gen. Microbiol. 15, 446 (1956).PubMedGoogle Scholar
  65. Goldberg, I. H.: Mode of action of antibiotics. II. Drugs affecting nucleic acid and protein synthesis. Am. J. Med. 39, 722 (1965).PubMedGoogle Scholar
  66. Goldman, D. S.: The inhibition of alanine dehydrogenase by metal chelates of tetracyclines. J. Biol. Chem. 235, 616 (1960).PubMedGoogle Scholar
  67. Green, M. N., J. B. J.sIMovIch, K. C. Tsou, and A. M. Seligman: Nitroreductase activity of animal tissues and of normal and neoplastic human tissues. Cancer 9, 176 (1956).PubMedGoogle Scholar
  68. GRÜNberger, D., J. Skoda, and F. Sorm: Mechanism of antibiotic action. V. Effect of chloramphenicol, chlortetracycline, and oxytetracycline on the synthesis of glutamic acid decarboxylase in Escherichia coli, and of tyrosine decarboxylase in Streptococcus faecalis. Chem. listy 48, 1711 (1954).Google Scholar
  69. Guillaume, J., et R. OsTeux: Mode d’action de l’aureomycine. Inhibition du métabolisme du glucose et des acides du cycle citrique chez Proteus mirabilis. Compt. rend. 249, 2643 (1959).Google Scholar
  70. Hahn, F. E.: Modes of action of antibiotics. Proc. Fourth Intern. Congr. Biochem., Vienna 1958, 5, 104 (1959).Google Scholar
  71. Hahn, F. E.: Inhibition of protein synthesis by antibiotics. Antimicrobial Agents Ann. 1960, 310 (1961).Google Scholar
  72. Hahn, F. E., and C. L. Wisseman, JR.: Inhibition of adaptive enzyme formation by antimicrobial agents. Proc. Soc. Exptl. Biol. Med. 76, 533 (1951).Google Scholar
  73. Hash, J. H.: Effects of tetracyclines on the incorporation of C14-alanine into Staphylococcus aureus. Federation Proc. 22, 301 (1963).Google Scholar
  74. Hash, J. H., and M. C. Davies: Electron microscopy of Staphylococcus aureus treated with tetracycline. Science 138, 828 (1962).PubMedGoogle Scholar
  75. Hash, J. H., M. Wishnick, and P. A. Miller: On the mode of action of the tetracycline antibiotics in Staphylococcus aureus. J. Biol. Chem. 239, 2070 (1964).PubMedGoogle Scholar
  76. Hayano, M.: Action of antibiotics and other substances on the formation of streptolysin S by Streptococcus hemolyticus. Japan, J. Bacteriol. 7, 319 (1952).Google Scholar
  77. Herrell, W. E., F. R. Heilman, and W. E. Wellman: Some bacteriologic, pharmacologic, and clinical observations on Terramycin. Ann. N.Y. Acad. Sci. 53, 448 (1950).PubMedGoogle Scholar
  78. Hierowski, M.: Inhibition of protein synthesis by chlortetracycline in the E. coli in vitro system. Proc. Natl. Acad. Sci. U.S. 53, 594 (1965).Google Scholar
  79. Hinton, N. A., and J. H. Orr: The effect of antibiotics on the toxin production of Staphylococcus aureus. Antibiotics Chemotherapy 10, 758 (1960).PubMedGoogle Scholar
  80. Hobby, G. L.: The mode of action of Terramycin and Aureomycin. Bacteriol. Rev. 17, 29 (1953).Google Scholar
  81. Holmes, I. A., and D. G. Wild: The synthesis of ribonucleic acid during inhibition of Escherichia coli by chlortetracycline. Biochem. J. 97, 277 (1965).PubMedGoogle Scholar
  82. Hooser, L. E., E. V. Davis, M. L. Moore, and R. A. Siem: Elimination of pleuropneumonia-like organisms from embryonic human lung tissue culture with tetracycline. J. Bacteriol. 87, 237 (1964).PubMedGoogle Scholar
  83. Huguchi, T., and S. Bolton: The solubility and complexing properties of oxytetracycline and tetracycline. Iii. Interactions in aqueous solution with model compounds, biochemicals, metals, chelates, and hexametaphosphate. J. Am. Pharm. Assoc. Sci. 48, 557 (1959).Google Scholar
  84. Humoller, F. L., and H. J. Zimmerman: Factors influencing betaine aldehyde oxidase activity of rat livers. Am. J. Physiol. 177, 279 (1954).PubMedGoogle Scholar
  85. Izaki, K., and K. Arima: Disappearance of oxytetracycline accumulation in the cells of multiple drug-resistant Escherichia coli. Nature 200, 384 (1963).PubMedGoogle Scholar
  86. Jackson, F. L.: Mode of action of tetracyclines. In: Experimental Chemotherapy (ed. R. J. Schnitzer and F. Hawking), vol. I II. New York and London: Academic Press 1964.Google Scholar
  87. Johnson, E. J., and A. R. Colmer: The relation of magnesium ion to the inhibition of the respiration of Azotobacter vinelandii by chlortetracycline, tetracycline, and 2,4-dichlorrophenoxyacetic acid. Antibiotics Chemotherapy 7, 521 (1957).Google Scholar
  88. Jones, J. G., and G. A. Morrison: The bacteriostatic actions of tetracycline and oxytetracycline. J. Pharm. Pharmacol. 14, 808 (1962).PubMedGoogle Scholar
  89. JoNEs, J. G., and G. A. Morrison: Inhibitions by tetracycline and oxytetracycline of the consumption of pyruvate by Aevobacter aerogenes. J. Pharm. Pharmacol. 15, 34 (1963).PubMedGoogle Scholar
  90. Karp, A., and J. C. Snyder: In vitro effect of Aureomycin, Terramycin and chlor- amphenicol on typhus rickettsiae. Proc. Soc. Exptl. Biol. Med. 79, 216 (1952).Google Scholar
  91. Katagiri, H., T. Tochikura, and Y. Suzuxl: Microbiological studies of coli-aerogenes bacteria. VI. The action of antibiotics on bacterial respiration and a-ketoglutaric acid fermentation. Bull. Agr. Chem. Soc. Japan 23, 322 (1959).Google Scholar
  92. Katagiri, H., Y. Suzuxl, and T. Tochikura: Studies on the action of antibiotics on bacterial metabolism. II. Effect of dihydrostreptomycin, chloramphenicol and oxytetracycline upon the aerobic carbohydrate metabolism by Escherichia coli. J. Antibiotics (Japan), Ser. A 13, 155 (1960).Google Scholar
  93. Katagiri, H., Y. Suzuxl, and T. Tochikura: Studies on the action of antibiotics on bacterial metabolism. Vii. Tetracyclines and bacterial respiration. Antibiotics (Japan), Ser. A 14, 134 (1961).Google Scholar
  94. Kindler, S. H., J. Mager, and N. GrossowIcz: Toxin production by Clostridium parabotulinum type A. J. Gen. Microbiol. 15, 394 (1956).PubMedGoogle Scholar
  95. Kirby, W. M. M., C. E. Roberts, and R. E. Burdick: Comparison of two new tetracyclines with tetracycline and demethylchlortetracycline. Antimicrobial Agents and Chemotherapy 1961, 286 (1961).Google Scholar
  96. KoHN, K. W.: Mediation of trivalent metal ions in the binding of tetracycline to macromolecules. Nature 191, 1156 (1961).Google Scholar
  97. Korotyaev, A. I.: Effect of antibiotics on pyruvate consumption by resting cells of Escherichia coli. Mikrobiologiya 31, 24 (1962).Google Scholar
  98. Kraskin, K. S., and A. M. Stern: Terramycin inhibition of gluconate oxidation by Escherichia coli. J. Bacteriol. 73, 608 (1957).PubMedGoogle Scholar
  99. Laskin, A. I., and W. M. Chan: Inhibition by tetracyclines of polyuridylic acid directed phenylalanine incorporation in Escherichia coli cell-free systems. Biochem. Biophys. Research Commun. 14, 137 (1964).Google Scholar
  100. Laskin, A. I., and W. M. Chan: The effects of vernamycins on aminoacyl-transfer Rna binding to Escherichia coli ribosomes. Antimicrobial Agents and Chemotherapy 1965, 321 (1966).Google Scholar
  101. Last, J. A.: Personal communication 1965.Google Scholar
  102. Last, J. A., K. Izaki, and J. F. Snell: The failure of tetracycline to bind Escherichia coli ribosomes. Biochim. et Biophys. Acta 103, 534 (1965).Google Scholar
  103. Leibfried, E. L.: The effect of streptomycin and chlortetracycline on catalase and certain dehydrogenases of Escherichia coli and Shigella. Antibiotiki 2, 21 (1957).Google Scholar
  104. Little, P. A., J. J. Oleson, and J. H. Williams: Factors influencing the sensitivity of protozoa to antibiotics. Antibiotics it Chemotherapy 3, 29 (1953).Google Scholar
  105. Loomis, W. F.: On the mechanism of action of Aureomycin. Science 111, 474 (1950).PubMedGoogle Scholar
  106. Malek, P., J. Rokos, M. Burger, J. Kolc, and P. Prochazka: The effect of antibiotics of the teteracycline group on enzymes and the practical clinical significance thereof. In: Antibiotics Ann. 1958/59, 221 (1959).Google Scholar
  107. Mandlestam, J., and H. J. Rogers: The incorporation of amino acids into the cell-wall mucopeptide of staphylococci and the effect of antibiotics on the process. Biochem. J. 72, 654 (1959).Google Scholar
  108. Marsh, C. L., and G. W. Kelley: Studies in helminth enzymology. H. Properties of an inorganic pyrophosphatase from A scaridia galli, a nematode parasite of chickens. Exptl. Parasitol. 8, 274 (1959).Google Scholar
  109. Mccormick, J. R. D., N. O. Sjolander, U. Hirsch, E. R. Jensen, and A. P. Doerschuk: A new family of antibiotics: the demethyltetracyclines. J. Am. Chem. Soc. 79, 4561 (1957).Google Scholar
  110. Mccormick, J. R. D., E. R. Jensen, P. A. Miller, and A. P. Doerschuk: The 6-deoxytetracyclines: Further studies on the relationship between structure and antibacterial activity in the tetracycline series. J. Am. Chem. Soc. 82, 3381 (1960).Google Scholar
  111. MccuLlough, N. B., and G. A. Beal: Antimetabolic action of sulfadiazine and certain antibiotics for brucella. J. Infectious Diseases 90, 196 (1952).Google Scholar
  112. Melnykovych, G., and K. R. Johansson: Effects of chlortetracycline on the stability of arginine decarboxylase in Escherichia coli. J. Bacteriol. 77, 638 (1959).PubMedGoogle Scholar
  113. Melnykovych, G., and E. E. Snell: Nutritional requirements for the formation of arginine decarboxylase in Escherichia coli. J. Bacteriol. 76, 518 (1958).PubMedGoogle Scholar
  114. Michel, M., and A. C. FranÇOis: Influence de la chlortetracycline sur les decarboxylase de la flore intestinale du porc. Comp. rend. 242, 1770 (1956).Google Scholar
  115. Miura, Y., Y. Nakamura, H. Matsudaira, and T. Komeiji: The mode of action of Terramycin. Antibiotics Chemotherapy 2, 152 (1952).Google Scholar
  116. Miura, Y., Y. Nakamura, Y. Yoshizawa, and H. Matsudaira: Comparative studies on the phosphorus metabolism of staphylococci in the presence of chlortetracycline and oxytetracycline. Antibiotics Chemotherapy 3, 822 (1953).Google Scholar
  117. MoRoz, A. F., and I. V. Shibaeva: The effect of levomycetin and chlortetracycline on the dehydrogenase activity of staphylococci sensitive and resistant to these antibiotics. Antibiotiki 9, 232 (1964).Google Scholar
  118. Mulli, K., K. Uhlenbroock u. L. Ludwig: Zum wirkungsmechanismus des Aureomycin. Arzneimittel-Forsch. 3, 559 (1953).Google Scholar
  119. Nakaya, R., and H. P. Treffers: The growth rates and adaptive enzyme activities of chloramphenicol-and oxytetracycline-resistant Escherichia coli. Antibiotics Ann. 1958/59, 865 (1959).Google Scholar
  120. Netien, G., P. Hutinel, and O. Sotty: Action de l’auréomycine et de la terramycine sur la biogénèse de la chlorophylle au cours de la germination. Compt. rend. soc. biol. 146, 1337 (1952).Google Scholar
  121. Nikolov, T. K., and A. T. Ilkov: Effect of chlortetracycline on methionine-35S incorporation into macroorganism proteins. Abstracts of Communications, V. Internat. Congr. Biochem. (Moscow) 1961, p. 44.Google Scholar
  122. Nirenberg, M., and P. Leder: Rna codewords and protein synthesis. The effect of trinucleotides upon the binding of sRna to ribosomes. Science 145, 1399 (1964).PubMedGoogle Scholar
  123. Okamato, S., and D. Mizuno: Mechanism of chloramphenicol and tetracycline resistance in Escherichia coli. J. Gen. Microbiol. 35, 125 (1964).Google Scholar
  124. Olitzki, A. L.: Hydrogen sulfide production by non-multiplying organisms and its inhibition by antibiotics. J. Gen. Microbiol. 11, 160 (1954).PubMedGoogle Scholar
  125. Osteux, R., et J. Laturaze: Mode d’action des antibiotiques: Antagonisme entre le groupe auréomycin-chloromycétine-terramycine et la biotine chez Clostridium welchii. Compt. rend. 234, 677 (1952).Google Scholar
  126. Osteux, R., J. Laturaze et J.Mack: Action inhibitrice de l’auréomycine sur la respiration bactérienne et l’oxydation des acides du cycle citrique. Compt. rend. 235, 554 (1952).Google Scholar
  127. Pansy, F. E., P. Kahn, J. F. Pagano, and R. DoxovucK: The relationship between Aureomycin, chloramphenicol and Terramycin. Proc. Soc. Exptl. Biol. Med. 75, 618 (1950).Google Scholar
  128. Park, J. T.: Inhibition of cell-wall synthesis in Staphylococcus aureus by chemicals which cause accumulation of wall precursors. Biochem. J. 70, 2P (1958).Google Scholar
  129. Porfirieva, R. P.: The influence of chlortetracycline on urea formation in the liver. Antibiotiki 6, 127 (1961).Google Scholar
  130. Porro, A., e SoNcin: Antibiotici e ossidazione dell’acido acetacetico prodotta dall’ E. coli. Arch. intern. pharmacodynamie 95, 64 (1953a).Google Scholar
  131. Porro, A., e E. Soncin: Antibiotici e ossidazione dell’acido acetoacetico prodotta dai tessuti. Arch. intern. pharmacodynamie 95, 497 (1953b).Google Scholar
  132. Porro, A., e E. SoNcin: Azione di alcuni antibiotici sul metabolismo dell’acido glutammico nell’E. coli. Arch. intern. pharmacodynamie 99, 481 (1954).Google Scholar
  133. Price, K. E., Z. Zolli, JR., J. C. Atkinson, and H. G. Luther: Antibiotic antagonists. I. The effect of certain milk constituents. Antibiotics Chemotherapy 7, 672 (1957a).Google Scholar
  134. Price, K. E., Z. Zolli, JR., J. C. Atkinson, and H. G. Luther: Antibiotic antagonists. II. Mode of inhibitory action of divalent cations for oxytetracycline. Antibiotics Chemotherapy 7, 689 (1957b).Google Scholar
  135. Reedy, R. J., W. A. Randall, and H. Welch: Variations in the antimicrobial activity of the tetracyclines. II. Antibiotics Chemotherapy 5, 115 (1955).Google Scholar
  136. Rege, D. V., and A. Sreenivasan: Influence of folic acid and vitamin B12 on the impairment of nucleic acid synthesis in Lactobacillus casei by Aureomycin. Nature 173, 728 (1954).PubMedGoogle Scholar
  137. Regna, P. P., I. A. Solomons, K. Murai, A. E. Timreck, K. J. Brunings, and W. A. Lazier: The isolation and general properties of Terramycin and Terramycin salts. J. Am. Chem. Soc. 73, 4211 (1951).Google Scholar
  138. Rendi, R., and S. Ochoa: Enzyme specificity in activation and transfer of amino acids to ribonucleoprotein particles. Science 133, 1367 (1961).Google Scholar
  139. Rendi, R., and S. Ochoa: Effect of chloramphenicol on protein synthesis in cell-free preparations of Escherichia coli. J. Biol. Chem. 237, 3711 (1962).PubMedGoogle Scholar
  140. RoKos, J., M. Burger, and P. Prochazka: Effect of calcium ions on the inhibition of hydrolases by chlortetracycline. Nature 181, 1201 (1958).PubMedGoogle Scholar
  141. RoKos, J., M. Burger, and P. Prochazka: Effect of chlortetracycline on the activity of a-amylases. Antibiotiki 4, 3 (1959a).PubMedGoogle Scholar
  142. Roxos, J., P. Malek, M. Burger, P. ProchÂZka, and J. KoLc: The effect of divalent metals on the inhibition of pancreatic lipase by chlortetracycline. Antibiotics Chemotherapy 9, 600 (1959b).Google Scholar
  143. Sakaguchi, G., S. Sakaguchi, T. Kawabata, Y. Nakamura, T. Akano, and K. Shiromizu: Influence of oxytetracycline upon the toxin production of type E Clostridium botulinum. J.pan J. Med. Sci. Biol. 13, 13 (1960).Google Scholar
  144. Saz, A. K., and J. Marmur: The inhibition of organic nitro-reductase by Aureomycin in cell-free extracts. Proc. Soc. Exptl. Biol. Med. 82, 783 (1953).Google Scholar
  145. Saz, A. K., and L. M. Martinez: Enzymatic basis of resistance to Aureomycin. I. Differences between flavoprotein nitro reductase of sensitive and resistant Escherichia coli. J. Biol. Chem. 223, 285 (1956).Google Scholar
  146. Saz, A. K., and L. M. Martinez: Enzymatic basis of resistance to Aureomycin. H. Inhibition of electron transport in Escherichia coli by Aureomycin. J. Biol. Chem. 233, 1020 (1958).Google Scholar
  147. Saz, A. K., and R. B. Slie: Inhibition of organic nitro reductase by chlortetracycline in bacterial cell-free extracts. Antibiotics Ann. 1953/54, 303 (1953a).Google Scholar
  148. Saz, A. K., and R. B. Slie: Manganese reversal of Aureomycin inhibition of bacterial cell-free nitro-reductase. J. Am. Chem. Soc. 75, 4626 (1953b).Google Scholar
  149. Saz, A. K., and R. B. Slie: The inhibition of organic nitro-reductase by Aureomycin in cell-free extracts. II. Cofactor requirements for the nitro-reductase enzyme complex. Arch. Biochem. Biophys. 51, 5 (1954a).PubMedGoogle Scholar
  150. Saz, A. K., and R. B. Slie: Reversal of Aureomycin inhibition of bacterial cell-free nitro reductase by manganese. J. Biol. Chem. 210, 407 (1954b).PubMedGoogle Scholar
  151. Saz, A. K., L. W. Brownell, and R. B. Slie: Aureomycin-resistant cell-free nitroreductase from aureomycin-resistant Escherichia coli. J. Bacteriol. 71, 421 (1956).PubMedGoogle Scholar
  152. Shahani, K. M.: Carbohydrate and pyruvate metabolism of oxytetracycline-sensitive and oxytetracycline-resistant organisms. Antibiotics Ann. 1956/57, 523 (1957).Google Scholar
  153. Slims, M. E.: Some metabolic aspects of tetracyclines. Clin. Pharmacol. Therap. 3, 321 (1962).Google Scholar
  154. Sloane, N. H.: Biological activity of a metabolite of p-aminobenzoic acid (Paba) in a hydroxylating system. J. Am. Chem. Soc. 75, 6352 (1953).Google Scholar
  155. Snell, J. F., and L. Cheng: Studies in metabolic spectra. II. Application of metabolic spectra to the investigation of the mode of action of oxytetracycline. Antibiotics Ann 1957/58, 538 (1958).Google Scholar
  156. Snell, J. F., and L. Cheng: Studies in metabolic spectra. Iii. The accumulation of D-glutamic acid in oxytetracycline-treated Escherichia coli. Antibiotics Chemotherapy 9, 159 (1959).Google Scholar
  157. Snell, J. F., and L. Cheng: Studies on modes of action of tetracycline. (II). Develop. Ind. Microbiol. 2, 107 (1961).Google Scholar
  158. Snell, J. F., F. Z. Thanassi, and D. A. Sypowtcz: Studies in metabolic spectra. I. Mode of action of tetracycline antibiotics. Antibiotics Chemotherapy 8, 57 (1958).Google Scholar
  159. Soncin, E.: Fenomeni di interferenza tra elettroliti e antibiotici. Iii. Ione magnesio e aureomycina, terramicina, chloramfenicolo. Arch. intern. pharmacodynamie 94, 346 (1953).Google Scholar
  160. Spector, W. S. (ed.): Handbook of toxicology. Philadelphia: W. B. Saunders Co. 1957.Google Scholar
  161. Srikantan, T. N., S. C. Agarwala, and D. L. Shrivastava: Studies in the enzyme make-up of Pasteurella pestis. Iii. Oxidative metabolism of virulent and avirulent strains. Indian J. Med. Research 45, 151 (1957).Google Scholar
  162. Srikantan, T. N., C. R. Krishna Murti, and D. L. Shrivastava: Studies on the enzyme make-up of Pasteurella pestis. VI. Aldolase activity of virulent and avirulent strains. Indian J. Med. Research 46, 1 (1958).Google Scholar
  163. Stanecki, J., J. Fast, and T. Krzywy: Inactivation of the bacteriostatic action of chlortetracycline by substances produced by bacterial metabolism. Antibiotics Chemotherapy 8, 167 (1958).Google Scholar
  164. Stephens, C. R., K. Murai, K. J. Brunings, and R. B. Woodward: Acidity constants of the tetracycline antibiotics. J. Am. Chem. Soc. 78, 4155 (1956).Google Scholar
  165. Suarez, G., and D. Nathans: Inhibition of aminoacyl-sRna binding to ribosomes by tetracycline. Biochem. Biophys. Research Commun. 18, 750 (1965).Google Scholar
  166. Tanner, J.: Contribution a l’étude de l’action des antibiotiques sur l’immunité. Action de la tetracycline sur les antigènes de Salmonella typhi. Ann. inst. Pasteur 98, 772 (1960).Google Scholar
  167. Traut, R. R., and R. E. MoNro: The puromycin reaction and its relation to protein synthesis. J. Mol. Biol. 10 63 (1964).PubMedGoogle Scholar
  168. Umbreit, W. W.: Mechanisms of antibacterial action. Pharmacol. Revs 5, 275 (1953).Google Scholar
  169. Van Meter, J. C., and J. J. Oleson: Effect of Aureomycin on the respiration of normal rat liver homogenates. Science 113, 273 (1951).Google Scholar
  170. Van Meter, J. C., A. Spector, J. J. Oleson, and J. H. Williams: In vitro action of Aureomycin on oxidative phosphorylation in animal tissues. Proc. Soc. Exptl. Biol. Med. 81, 215 (1952).Google Scholar
  171. Vazquez, D.: Antibiotics which effect protein synthesis: The up-take of 14C-chloramphenicol by bacteria. Biochem. Biophys. Research Commun. 12, 409 (1963).Google Scholar
  172. Vazquez, D.: The binding of chloramphenicol by ribosomes from Bacillus megaterium. Biochem. Biophys. Research Commun. 15, 464 (1964).Google Scholar
  173. Vinter, V.: Spores of microorganisms. X. Interference of tetracycline antibiotics with sporogenesis of bacilli. Folia Microbiol. 7, 275 (1962).Google Scholar
  174. Vonk, M. A., L. W. Mcelroy, and R. T. Berg: The effect of ingested chlortetracycline on some hydrolases and organs associated with the digestive process in growing pigs. I. Assay methods for protease, amylase, and cellulase activity. Can. J. Biochem. and Physiol. 35, 181 (1957).Google Scholar
  175. Vyshepan, E. D., and V. S. Zueva: The effect of chlortetracycline on the enzymatic hydrolysis of adenosinetriphosphoric acid. Biokhimiya 24, 833 (1959).Google Scholar
  176. Wagner, W. H.: Über den hemmenden Einfluß von Aureomycin auf den oxydativen Abbau aromatischer Substanzen durch saprophytare Mycobakterien. Naturwissenschaften 22, 525 (1950).Google Scholar
  177. Waksman, S. A., and H. Lechevalier: Modes of action of antibiotics. In: The actinomycetes, vol. 3. Baltimore: Williams Wilkins Co. 1962.Google Scholar
  178. Warner, J. R., and A. Rich: The number of soluble Rna molecules on reticulocyte ribosomes. Proc. Nat. Acad. Sci. U.S. 51, 1134 (1964).Google Scholar
  179. Watanabe, T., and T. Fukasawa: Episome-mediated transfer of drug resistance in Enterobacteriaceae. I. Transfer of resistance factors by conjugation. J. Bacteriol. 81, 669 (1961).PubMedGoogle Scholar
  180. Weil, A. J.: Inhibition of pigment formation of Serratia marcescens by chloramphenicol, Aureomycin and Terramycin. Proc. Soc. Exptl. Biol. Med. 79, 539 (1952).Google Scholar
  181. Weinberg, E. D.: The reversal of the toxicity of oxytetracycline (Terramycin) by multivalent cations. J. Infectious Diseases 95, 291 (1954a).Google Scholar
  182. Weinberg, E. D.: The influence of inorganic salts on the activity in vitro of oxytetracycline. Antibiotics Chemotherapy 4, 35 (1954b).Google Scholar
  183. Weinberg, E. D.: The effect of Mn++ and antimicrobial drugs on sporulation of Bacillus subtilis in nutrient broth. J. Bacteriol. 70, 289 (1955a).PubMedGoogle Scholar
  184. Weinberg, E. D.: Futher studies on metallic ion reversal of oxytetracycline; reactivation of drug-inactivated cells by Mg++. Antibiotics Ann. 1954/55, 169 (1955b).Google Scholar
  185. Weinberg, E. D.: The mutual effects of antimicrobial compounds and metallic cations. Bacteriol. Rev. 21, 46 (1957).PubMedGoogle Scholar
  186. Weisberger, A. S., S. Wolfe, and S. Armentrout: Inhibition of protein synthesis in mammalian cell-free systems by chloramphenicol. J. Exptl. Med. 120, 161 (1964).Google Scholar
  187. Welch, H., W. A. Randall, R. J. Reedy, and E. J. Oswald: Variations in antimicrobial activity of the tetracyclines. Antibiotics Chemotherapy 4, 741 (1954).Google Scholar
  188. Wolfe, A. D., and F. E. Hahn: Influence of inhibitors of protein synthesis on the messenger-directed binding of amino acyl-s-Rna to ribosomes. Federation Proc. 24, 217 (1965a).Google Scholar
  189. Wolfe, A. D., and F. E. Hahn: Mode of action of chloramphenicol. IX. Effects of chloramphenicol upon a ribosomal amino acid polymerization system and its binding to bacterial ribosomes. Biochim. et Biophys. Acta 95, 146 (1965b).Google Scholar
  190. Wong, D. T. O., S. Barban, and S. J. Ajl: Inhibition of respiration by Aureomycin and Terramycin. Antibiotics Chemotherapy 3, 607 (1953).Google Scholar
  191. Wright, S. S., and M. Finland: Cross-resistance among three tetracyclines. Proc. Soc. Exptl. Biol. Med. 85, 40 (1954).Google Scholar
  192. Yagi, K., J. Okuda, T. Ozawa, and K.Okada: Inhibitory mechanism of chlortetracycline on D-amino acid oxidase. Science 124, 273 (1956).PubMedGoogle Scholar
  193. Yagi, K., J. Okuda, T. Ozawa, and K. Okada: Mechanism of inhibition of D-amino acid oxidase. I. Inhibitory action of chlortetracycline. Biochim. et Biophys. Acta 34, 372 (1959).Google Scholar
  194. Yee, R. B., and H. M. Gezon: Ribonucleic acid of chloramphenicol-treated Shigella flexneri. J. Gen. Microbiol. 32, 299 (1963).PubMedGoogle Scholar
  195. Yee, R. B., S.F. Pan, and H. M. Gezon: Studies on the metabolism of Shigella. Iii. The inhibition of the oxidation of glutamate by Aureomycin. J. Bacteriol. 75, 56 (1958).PubMedGoogle Scholar
  196. Yokota, T., and T. Akiba: Studies on the mechanism of transfer of drug resistance in bacteria. 22. Influence of chloramphenicol and tetracycline on the 14C-amino acid incorporation by ribosomes isolated from the drug sensitive and multiple resistant strain of E. coli. Med. and Biol. (Japan) 64, 9 (1962a).Google Scholar
  197. Yokata, T., and T. Akiba: Studies on the mechanism of transfer of drug resistance in bacteria. 23. Mechanisms of the antibacterial action of tetracycline and the tetracycline resistance in the artificial, TC-resistant strain of E. coli. Med. and Biol. (Japan) 64, 39 (1962b).Google Scholar
  198. Younathan, E. S., and S. S. Barkulis: Effect of some antimetabolites on the production of streptolysin S’. J. Bacteriol. 74, 151 (1957).PubMedGoogle Scholar
  199. Zimmerman, H. J., and F. L. Humoller: Effect of Aureomycin on choline oxidase and other enzyme systems of rat liver. Am. J. Physiol. 175, 468 (1953).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • Allen I. Laskin

There are no affiliations available

Personalised recommendations