Advertisement

Gammaglobuline und Immunglobuline

  • E. Gold
  • L. Holländer

Zusammenfassung

Ursprünglich wurden die Serumglobuline entsprechend ihrer Wanderungsgeschwindigkeit im elektrischen Feld in α-, β- und γ-Globuline eingeteilt. Später wurde durch immunelektrophoretische und andere Untersuchungen festgestellt, daß gewisse Globuline trotz verschiedener Ladung miteinander verwandt sind und daß sie auf Grund ihrer antigenen Struktur, ihres Gewichtes, ihrer chemischen Zusammensetzung usw. in Gruppen zusammengefaßt werden können. Da diese Globuline zum wesentlichen Teil aus Antikörpern bestehen, werden sie Immunglobuline genannt (1). Die drei Gruppen der Immunglobuline (siehe „Struktur und Eigenschaften“) sind:

γ,γ 2,γ ss,γ G*

β 2M, β 1M, β-Makroglobulin, γ M*

β 2A,γ 1A,γ A*

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Franklin, E. C.: The immune globulins—their structure and function and some techniques for their isolation. Progr. Allergy 8, 58 (1964).Google Scholar
  2. 2.
    Ceppelini, R.: Nomenclature for human immunoglobulins. Bull. Wld Hlth Org. 30, 447 (1964).Google Scholar
  3. 3.
    Doerr, R.: Die Immunitätsforschung. Wien: Springer 1947.Google Scholar
  4. 4.
    Ling, N. R.: The backbone of the antibody. Lancet 1958II, 1281.Google Scholar
  5. 5.
    Cinader, B.: Dependence of antibody responses on structure and polymorphism of autologous macromolecules. Brit. med. Bull. 19, 219 (1963).PubMedGoogle Scholar
  6. 6.
    Cohen, S.: Properties of the separated chains of human gammaglobulin. Nature (Lond.) 197, 253 (1963).Google Scholar
  7. 7.
    Wiener, A. S., M. A. Hyman, and L. Handiman: A new serological test (inhibition test) for human serum antiglobulin. Proc. Soc. exp. Biol. (N.Y.) 71, 96 (1949).Google Scholar
  8. 8.
    Simmons, R. T.: Tests for Rh isosensitisation of red cells in the newborn. Nature (Lond.) 158, 486 (1946).Google Scholar
  9. 9.
    Coombs, R. R. A., and A. E. Mourant: On certain properties of antisera prepared against human serum and its various protein fractions: their use in the detection of sensitisation of human red cell with “incomplete“ Rh antibody, and on the nature of this antibody. J. Path. Bact. 59, 105 (1947).PubMedGoogle Scholar
  10. 10.
    Allison, A. C., and J. A. Morton: Species specificity in the inhibition of antiglobulin sera. J. clin. Path. 6, 314 (1953).PubMedGoogle Scholar
  11. 11.
    Anderson, J. R.: The agglutination of sensitised red cells by antibody to serum with special reference to non-specific reactions. Brit. J. exp. Path. 33, 468 (1952).PubMedGoogle Scholar
  12. 12.
    Anderson, J. R.: Application of antiglobulin reaction to bloodstains in determination of animal species. Amer. J. clin. Path. 24, 920 (1954).Google Scholar
  13. 13.
    Hill, Z.: On the problem of species specificity of antiglobulin sera. Vox Sang (Basel) 7, 53 (1962).Google Scholar
  14. 14.
    Landsteiner, K.: The specificity of serological reactions, revised ed. New York: Dover Publ. 1962.Google Scholar
  15. 15.
    Wiener, A. S.: Immunological relationship between serum globulins of man and other primates, revealed by a serological inhibition test. Transfusion (Philad.) 4, 347 (1964).Google Scholar
  16. 16.
    Schmitt, J., W. Spielmann u. M. Weber: Serologische Untersuchungen zur Frage der verwandtschaftlichen Beziehungen von Pan paniscus Schwarz 1929 zu anderen Homi- noiden. Z. Säugetierk. 27, 45 (1962).Google Scholar
  17. 17.
    Goodman, M.: Evolution of the immunologic species specificity of human serum proteins. Hum. Biol. 34, 104 (1963).Google Scholar
  18. 18.
    Goodman, M.: Serological analysis of the phyletic relationship of recent hominoids. Hum. Biol. 35, 377 (1963).PubMedGoogle Scholar
  19. 19.
    Hess, M., and R. Butler: Anti-Gm specificities in sera of rhesus monkeys immunised with human gammaglobulin. Vox Sang (Basel) 7, 93 (1962).Google Scholar
  20. 20.
    Alepa, F. P., and A. G. Steinberg: The production of anti-Gm reagents by Rhesus monkeys immunised with pooled human gamma globulin. Vox Sang. (Basel) 9, 333 (1964).Google Scholar
  21. 21.
    Dausset, J., J. Colombani et M. Colombani: Les antiglobulines «individuelles». Nouv. Rev. franc. Hémat. 2, 695 (1962).PubMedGoogle Scholar
  22. 22.
    Gold, E. R., and J. W. Lockyer: Production of two kinds of anti-gamma2-globulin in the rabbit and reactions of an “anti-antibody” with D-positive and Du cells. Vox Sang. (Basel) 9, 573 (1964).Google Scholar
  23. 23.
    Dean, H. R.: On the factor concerned in agglutination. Proc. roy. Soc. B 84, 416 (1911).Google Scholar
  24. 24.
    Olsen, O.: Die agglutinationsfördernde Wirkung des Normalserums in ihrer Beziehung zur Hämagglutination und Hämolyse. Z. Immun.-Forsch. 33, 283 (1922).Google Scholar
  25. 25.
    Meyer, K.: Über das Verhalten der Hammelblutimmunsera gegenüber den Lipoiden aus Organen vom heterogenetischen Typus. Über antigene Eigenschaften von Lipoiden. Z. Immun.-Forsch. 34, 235 (1922).Google Scholar
  26. 26.
    Pike, M. R., S. E. Sulkin, and C. H. Coggeshall: Serological reactions in rheumatoid arthritis. III. Increased agglutination of sensitised sheep erythrocytes in the presence of normal animal sera. J. Immunol. 66, 107 (1951).PubMedGoogle Scholar
  27. 27.
    Lamont-Havers, R. W.: Serological reactions of rheumatoid arthritis; summary of first conf. Jan. 23, 1957, p. 11, Arthritis and Rheumatism Foundation. New York 1958.Google Scholar
  28. 28.
    Watson, R. G., and N. M. Collins: Antiglobulins in normal serum. I. Characterisation of two antiglobulins in normal rabbit sera. J. Immunol. 90, 238 (1963).PubMedGoogle Scholar
  29. 29.
    Nelken, D.: Increase in titer of antihuman globulin serum after absorption with red blood cells. Bull. Res Coun. Israel E 11, 29 (1963).Google Scholar
  30. 30.
    Nelken, D., and Z. Welner: Increase in titer of rabbit anti-human serum after addition of normal rabbit serum. Vox Sang (Basel) 9, 349 (1964).Google Scholar
  31. 31.
    Milgrom, F., S. Dubiski, and G. Woznicko: Human sera with “anti-antibody”. Vox Sang. (Basel) 1, 172 (1956).Google Scholar
  32. 32.
    Andresen, P. H.: Relation between anti-antibodies and Gm-agglutinins. Transfusion (Philad.) 3, 211 (1963).Google Scholar
  33. 33.
    Osterland, C. K., M. Harboe, and H. G. Kunkel: Antigammaglobulin factors in human sera revealed by enzymatic splitting of anti-Rh antibodies. Vox Sang. (Basel) 8, 133 (1963).Google Scholar
  34. 34.
    Harboe, M., B. Rau, and K. Aho: Antigammaglobulin factors in human sera. (In Vorbereitung 1964.)Google Scholar
  35. 35.
    Augustin, R., and B. Hayward: Immunochemical studies of human serum proteins. Antigenic inhomogeneities of the gammaglobulins, their subunits and number of determinants and their relation to a Waldenstrom macroglobulin. Immunology 4, 450 (1961).PubMedGoogle Scholar
  36. 36.
    Westphal, O., u. O. Luderitz: Die biologische Bedeutung der chemischen Feinstruktur bakterieller Zellgrenzflächen. Naturwissenschaften 50, 413 (1963).Google Scholar
  37. 37.
    Ropartz, C., P.Y. Rousseau et L. Rivat: Interet des groupes des gammaglobulines Gm et Inv dans l’appreciation du métissage des populations. Etude de ces groupes seriques dans l’Ouest africain et l’extreme Orient. Rev. franc. Etud. clin. biol. 8, 465 (1963).PubMedGoogle Scholar
  38. 38.
    Ropartz, C., P.Y. Rousseau et L. Rivat: Un cas d’exclusion de paternite par le facteur serique Gm(x). Rev. franc. Etud. clin. biol. 5, 606 (1960).PubMedGoogle Scholar
  39. 39.
    Fudenberg, H., J. Heremans, and E. C. Franklin: A hypothesis for genetic control of synthesis of gammaglobulins. Ann. Inst. Pasteur 104, 155 (1963).Google Scholar
  40. 40.
    Grubb, R.: Human gammaglobulin polymophism. Proceedings of the 10th Congr. of the int. Soc. of blood transf., Stockholm, 1964 (im Druck).Google Scholar
  41. 41.
    Smithies, O.: Gammaglobulin variability: a genetic hypothesis. Nature (Lond.) 199, 1231 (1963).Google Scholar
  42. 42.
    Smithies, O.: Serum proteins and chromosal rearrangements, Proceedings of the 10th Congr. of the int. Soc. of blood transf., Stockholm 1964 (im Druck).Google Scholar
  43. 43.
    Gell, P. G. H., and A. S. Kelus: Immunochemical analysis of rabbit gammaglobulin allotypes. Nature (Lond.) 200, 653 (1963).Google Scholar
  44. 44.
    Steinberg, A. G., R. Stauffer, and I. Dunsford: Studies on hereditary gamma globulin factors: Detection of the factor Gm-like in a white family. Vox Sang. (Basel) 8, 51 (1963).Google Scholar
  45. 45.
    Ropartz, C.: Donnees actuelles sur les groupes hereditaires de gammaglobulines. Transfusion (Paris) 6, 5 (1963).Google Scholar
  46. 46.
    Ropartz, C.: Les systemes hereditaires des gammaglobulines. Ann. Biol. clin. 22, 445 (1964).Google Scholar
  47. 47.
    Gold, E. R., L. Martensson, C. Ropartz, L. Rivat, and P.Y. Rousseau: Gm(f)-a determinant of human gammaglobulin. Vox Sang. (Basel) 10, 299 (1965).Google Scholar
  48. 48.
    Martensson, L., and E. R. Gold: Gmf-a gammaglobulin gene. Proceedings of the 10th int. Congr. of blood transf., Stockholm, Sept. 1964 (im Druck).Google Scholar
  49. 49.
    Steinberg, A. G., and R. Goldblum: A genetic study of the antigens associated with the Gm(b) factor of human gamma globulin. Amer. J. hum. Genet, (im Druck 1964).Google Scholar
  50. 50.
    Ropartz, C.: Persönliche Mitteilung 1964.Google Scholar
  51. 51.
    Gold, E. R.: Unveröffentlichte Beobachtungen 1964.Google Scholar
  52. 52.
    Ropartz, C., L. Rivat et P. Y. Russeau: Le Gm(b) et ses problemes. Vox Sang. (Basel) 8, 717 (1963).Google Scholar
  53. 53.
    Steinberg, A. G., and S. H. Polmar: The relation of the S and F fragments and the H and L chains of gammaglobulin to the Gm groups. Vox Sang. (Basel) (im Druck 1964).Google Scholar
  54. 54.
    Kronvall, G.: Gm(f) activity of human gamma globulin fragments. Vox Sang. (Basel) (im Druck 1964).Google Scholar
  55. 55.
    Gold, E. R., W. J. Mandy, and H. H. Fudenberg: Relation between Gm(f) and the structure of the gammaglobulin molecule. Nature 1965 (im Druck).Google Scholar
  56. 56.
    Allen, J. C., and H. G. Kunkel: Antibodies to genetic types of gammaglobulin after multiple transfusions. Science 139, 418 (1963).PubMedGoogle Scholar
  57. 57.
    Steinberg, A. G., and J. A. Wilson: Hereditary globulin factors and immune tolerance in man. Science 140, 303 (1963).PubMedGoogle Scholar
  58. 58.
    Speiser, P.: Über Antikörperbildung von Säuglingen und Kleinkindern gegen mütterliches gamma2-Globulin. Ein bisher unbekanntes, dem Erythroblastosemechanismus konträres Phänomen mit anscheinend immunogenetisch obligatem Charakter. Wien. med. Wschr. 113, 966 (1963).PubMedGoogle Scholar
  59. 59.
    Fudenberg, H. H., and B. R. Fudenberg: Antibody to hereditary human gammaglobulin (Gm) factor resulting from maternal-foetal incompatibility. Science 145, 170 (1964).PubMedGoogle Scholar
  60. 60.
    Fischer, K.: Immunhämatologische und klinische Befunde bei einem Transfusionszwischenfall infolge Gm(a) Antikörperbildung. Abstracts of the 10th Congr. of the int. soc. of blood transf., Stockholm, 1964, P5 B: 12.Google Scholar
  61. 61.
    Martensson, L.: On the relationship between the gammaglobulin genes of the Gm system. J. exp. Med. 120, 1169 (1964).Google Scholar
  62. 62.
    Waller, M., and S. D. Lawler: A study of the properties of the Rhesus antibody (Ri) diagnostic for the rheumatoid factor and its application to Gm grouping. Vox Sang. (Basel) 7, 491 (1962).Google Scholar
  63. 63.
    Oudin, J.: Reaction de precipitation specifique entre des serums d’animaux de meme espece. C.R. Acad. Sci. (Paris) 242, 2489 (1956).Google Scholar
  64. 64.
    Dray, S., and G. O. Young: Differences in the antigenic components of sera of individual rabbits as shown by induced isoprecipitins. J. Immunol. 81, 142 (1958).PubMedGoogle Scholar
  65. 65.
    Dray, S., and G. O. Young: Two antigenically different gammaglobulins in domestic rabbits revealed by isoprecipitins. Science 129, 1023 (1959).PubMedGoogle Scholar
  66. 66.
    Kelus, A. S.: An iso-antigen of mouse gammaglobulin present in inbred strains. Nature (Lond.) 183, 325 (1959).Google Scholar
  67. 67.
    Benacerraf, B., and P. G. H. Gell: Delayed hypersensitivity to homologous gammaglobulin in the guinea-pig. Nature (Lond.) 189, 586 (1961).Google Scholar
  68. 68.
    Beck, J. S.: Some properties of human anti-antibody. Brit. J. exp. Path. 42, 7 (1961).PubMedGoogle Scholar
  69. 69.
    Lille-Szyszkowicz, L, and A. Gulmantowicz: A further case of a human serum con taining “anti-antibodies”. Vox Sang. (Basel) 3, 100 (1958).Google Scholar
  70. 70.
    Milgrom, F.: Rabbit sera with “anti-antibody”. Vox Sang. (Basel) 7, 545 (1962).Google Scholar
  71. 71.
    Fudenberg, H.H., J.W. Goodman, and F. Milgrom: Immunochemical studies on rabbit anti-antibody. J. Immunol. 92, 227 (1964).PubMedGoogle Scholar
  72. 72.
    Unger, L. J., A. S. Wiener, and L. Katz: Studies on antibody-like substances in certain human serums, causing agglutination of red cells coated with Rh0 antibody. A.er. J. clin. Path. 29, 113 (1958).Google Scholar
  73. 73.
    Gold, E. R.: Unveröffentlichte Beobachtungen 1964.Google Scholar
  74. 74.
    Gell, P. G. H., and A. S. Kelus: Anti-antibody or clone product? Nature (Lond.) 201, 687 (1964).Google Scholar
  75. 75.
    Oiidin, J., and M. Michel: A new allotype form of rabbit serum gammaglobulin apparently associated with antibody function and specificity. C. R. Acad. Sci. (Paris) 257, 805 (1963).Google Scholar
  76. 76.
    Korngold, L., and G. van Leeuwen: The use of cross-reacting antiserums for the study of antigenic heterogeneity of mammalian gamma2-globu3ins. Int. Arch. Allergy 19, 271 (1961).PubMedGoogle Scholar
  77. 77.
    Burtin, P.: Etudes immunologiques sur la structure antigenique des gammaglobulines humaines. I und II. in Peeter’s Protides of the biol. fluids. Proc. 8th Colloq., Brugge, 1960, S. 119 et 284. Amsterdam: Elsevier Publ. Co. 1961.Google Scholar
  78. 78.
    Mannik, M., and H. G. Kunkel: The immunoglobulins. Bull. rheum. Dis. 13, 8 (1963).Google Scholar
  79. 79.
    Hassig, A.: Die Antigenstruktur der Paraproteine. Ergebn. Mikrobiol. 34, 180 (1961).Google Scholar
  80. 80.
    Kunkel, H. G., M. Mannik, and R. C. Williams: Individual antigenic specificity of isolated antibodies. Science 140, 1218 (1963).PubMedGoogle Scholar
  81. 81.
    Nussenzweig, V., and B. Benacerraf: Differences in the elctrophoretic mobilities of guinea pig 7 S antibodies of different specificity. J. exp. Med. 119, 409 (1964).PubMedGoogle Scholar
  82. 82.
    Grey, H. M., and H. G. Kunkel: H chain subgroups of myeloma proteins and normal 7 S gammaglobulin. J. exp. Med. (im Druck 1964).Google Scholar
  83. 83.
    Kunkel, H. G., J. A. Allen, H. M. Grey, L. Martensson, and R. Grubb: A relationship between the H chain groups of 7 S gammaglobulin and the Gm system. Nature (Lond.) 203, 413 (1964).Google Scholar
  84. 84.
    Robert, B., et P. Grabar: Dosage des groupements thiol proteiques dans les reactions immunochimiques. Ann. Inst. Pasteur 92, 56 (1957).Google Scholar
  85. 85.
    Luzzio, A. J.: The serologic specificity of radiation altered human serum gammaglobulin. J. Immunol. 90, 224 (1963).PubMedGoogle Scholar
  86. 86.
    Miller, F., R. T. McClusky, and B. Benacerraf: Autosensitisation to denatured guinea-pig gammaglobulin. Fed. Proc. 20, 37 (1961).Google Scholar
  87. 87.
    Abruzzo, J. L., and C. L. Christian: The induction of rheumatoid-factor-like substance in rabbits. J. exp. Med. 114, 791 (1961).PubMedGoogle Scholar
  88. 88.
    Meltzer, M., E. C. Franklin u. A. Taranta: (In Vorbereitung.) Zit. in 1. Google Scholar
  89. 89.
    Martensson, L.: Anti-Gm molecules with distinctly different physicochemical properties. Acta path. microbiol. scand. (Suppl. 157–158) 56, 352 (1962).Google Scholar
  90. 90.
    Kunkel, H. G., H. J. Muller-Eberhard, H. H. Fudenberg, and T. B. Tomasi: Gamma-globulin complexes in rheumatoid arthritis and certain other conditions. J. clin. Invest. 40, 117 (1961).PubMedGoogle Scholar
  91. 91.
    Meltzer, M., E. C. Franklin u. H. H. Fudenberg: Unveröffentlichte Beobachtungen. Zit. in 1. Google Scholar
  92. 92.
    Milgrom, F., and E. Witebsky: Autoantibodies and autoimmune diseases. J. Amer. med. Ass. 181, 706 (1962).Google Scholar
  93. 93.
    Fudenberg, H. H., and H. G. Kunkel: Specificity of the reaction between rheumatoid factors and gamma globulin. J. exp. Med. 114, 257 (1961).PubMedGoogle Scholar
  94. 94.
    Ziff, M., P. Brown, J. Lospalluto, J. Badin, and C. McEwen: Agglutination and inhibition by serum globulin in the sensitized sheep cell agglutination reaction in rheumatoid arthritis. Amer. J. Med. 20, 500–509 (1956).PubMedGoogle Scholar
  95. 95.
    Harboe, M.: Relation between Gm types and hemagglutinating substances in rheumatoid sera. Acta path. microbiol. scand. 50, 89 (1960).PubMedGoogle Scholar
  96. 96.
    Franklin, E. C., H. G. Kunkel, H. J. Muller-Eberhard, and H. R. Holman: Relation of high molecular weight proteins to serological reactions in rheumatoid arthritis. Ann. rheum. Dis. 16, 315 (1957).PubMedGoogle Scholar
  97. 97.
    Svartz, N.: The rheumatoid factor, its properties and mode of origin. Acta path. microbiol. scand. Suppl. 154, 207 (1962).Google Scholar
  98. 98.
    Christian, C. L.: A study of rheumatoid arthritis sera: Comparison of spontaneous precipitates and gamma-globulin-induced precipitates. Arthr. and Rheum. 2,289 (1959).Google Scholar
  99. 99.
    Aho, K., J. Kirplia, O. Wager, and M. Virkunnen: Reaction of the rheumatoid factor with human specific precipitates. I. Adsorption of the rheumatoid factor to and elution from autogenous and isogenous rheumatoid diphtheria toxoid-antitoxin precipitates. Ann. Med. exp. Fenn. 39, 66 (1961).Google Scholar
  100. 100.
    Aho, K.: The problem of the antibody nature of the rheumatoid factor. Ann. Med. exp. Fenn. 39, Suppl. 7 (1961).Google Scholar
  101. 101.
    Brocteur, J.: Les groupes des gamma-globulines chez l’homme. Bruxelles: Arscia S. A. 1962.Google Scholar
  102. 102.
    Waaler, E.: On the occurrence of a factor in human serum activating the specific agglutination of sheep blood corpuscles. Acta path. microbiol. scand. 17, 172 (1940).Google Scholar
  103. 103.
    Rose, H. M., C. Ragan, E. Pearce, and M. O. Lipmann: Differential agglutinatio of normal and sensitised sheep erythrocytes by sera of patients with rheumatoid arthritis. Proc. Soc. exp. Biol. (N.Y.) 68, 1 (1948).Google Scholar
  104. 104.
    Cohen, E., E. Neter, I. Mink, and B. M. Norcross: Use of alligator erythrocytes for demonstrating agglutination activating factor in rheumatoid arthritis. Amer. J. clin. Path. 30, 32 (1958).Google Scholar
  105. 105.
    Nasou, J. P., D. E. Kayhoe, and M. A. Bozicevich: The FII bentonite flocculation test (FnBFT) for rheumatoid arthritis. Amer. J. clin. Path. 40, 99 (1963).Google Scholar
  106. 106.
    Bozicevich, J., J. J. Bunim, J. Freund, and S. B. Ward: Bentonite flocculation test for rheumatoid arthritis. Proc. Soc. exp. Biol. (N.Y.) 97, 180 (1958).Google Scholar
  107. 107.
    Nelson, R. A.: Persönliche Mitteilung an Dr. Peacock.Google Scholar
  108. 108.
    Walton, K. W., D. S. Rowe, J. F. Soothill, and D. R. Stanworith: An investigation of methods of isolation of beta2M1 globulin (Syn: Iota protein, 19 S gammaglobulin, gamma1 macroglobulin, beta2M globulin) and its association with isoagglutinin activity, together with preliminary observations on other macroglobulins of slow electrophoretic mobility in normal human serum. Immunology 6, 305 (1963).Google Scholar
  109. 109.
    Heremans, J. F., and J. P. Vaerman: beta2a-globulin as a possible carrier of allergic reaginic activity. Nature (Lond.) 193, 1091 (1962).Google Scholar
  110. 110.
    Fireman, P., W. E. Vanner, and H. C. Goodman: The association of skin-sensitising antibody with beta2A-globulins in sera from ragweedsensitive patients. J. exp. Med. 117, 603 (1963).PubMedGoogle Scholar
  111. 111.
    Gitlin, D., Ph. Fireman, K. Schmid, P. Charache, F. Cordoba, and E. Hershgold: The relation of low molecular weight gamma-globulins of urine and plasma to serum 7 S gammaglobulins. Vox Sang. (Basel) 9, 246 (1964).Google Scholar
  112. 112.
    Franklin, E. C.: The structure, function and significance of the immune globulins. Vox Sang. (Basel) 7, 1 (1962).Google Scholar
  113. 113.
    Edelmann, G. M., and J. A. Gally: A model for the 7 S antibody molecule. Proc. nat. Acad. Sci. (Wash.) 51, 846 (1964).Google Scholar
  114. 114.
    Kratky, O., G. Porod, A. Sekora, and B. Paletta: J. polymer Sci. 16, 163 (1955). Zit. in 113. Google Scholar
  115. 115.
    Porter, R. R.: Chemical structure of gammaglobulin and antibodies. Brit. med. Bull. 19, 197 (1963).PubMedGoogle Scholar
  116. 116.
    Silman, H. I., J. J. Cebra, and D. Givol: The carboxyl terminal amino acids of rabbit gammaglobulin. J. biol. Chem. 237, 2196 (1962).PubMedGoogle Scholar
  117. 117.
    Porter, R. R.: The hydrolysis of rabbit gammaglobulin and antibodies with crystalline papain. Biochem. J. 73, 119 (1959).PubMedGoogle Scholar
  118. 118.
    Markus, G., A. L. Grossberg, and D. Pressmann: Disulfide bonds of rabbit gammaglobulin and its fragments. Arch. Biochem. Biophys. 96, 62 (1962).Google Scholar
  119. 119.
    Franklin, E. C., and Z. Dische: Asymmetric distribution of sialic acid and fucose in human gammaglobulins. Fed. Proc. 21, 2, 33 (1962).Google Scholar
  120. 120.
    Thorbecke, G. J., and E.C. Franklin: Antigenic cross-reactivity between 7 S and 19 S rabbit gammaglobulin. J. Immunol. 87, 753 (1961).PubMedGoogle Scholar
  121. 121.
    Cebra, J. J., D. Givol, and E. Katchalski: A two-stage cleavage of rabbit gammaglobulin by water-insoluble papain preparation followed by cysteine. J. biol. Chem. 236, 1720 (1961).PubMedGoogle Scholar
  122. 122.
    Stelos, P., G. Tadzinski, and D. Pressmann: Heterogeneity of rabbit antibody fragments. J. Immunol. 88, 572 (1962).PubMedGoogle Scholar
  123. 123.
    Stelos, P., O. Roholt, and D. Pressmann: Heterogeneity of the major fractions of papain digest of rabbit antibody. J. Immunol. 89, 113 (1962).PubMedGoogle Scholar
  124. 124.
    Parfentjew, I. A.: U.S.A. Patent 2065196, 1936; 2123198, 1938. Zit. in E. A. Kabat u. M. M. Mayer, Experimental immunochemistry. Springfield (111.): Ch. C. Thomas 1961.Google Scholar
  125. 125.
    Askonas, B. A., and J. L. Fahey: An investigation of closely related gamma-myeloma proteins and normal mouse gammaglobulin by partial enzymatic degradation and starch gel electrophoresis. Nature (Lond.) 190, 960 (1961).Google Scholar
  126. 126.
    Grossberg, A. L., P. Stelos, and D. Pressmann: Structure of fragments of antibody molecules as revealed by reduction of exposed disulfide bonds. Proc. nat. Acad. Sci. (Wash.) 48, 1203 (1962).Google Scholar
  127. 127.
    Skvaril, F.: Changes in outdated human gammaglobulin preparations. Nature (Lond.) 185, 475 (1960).Google Scholar
  128. 128.
    Skvaril, F., and D. Gruneberger: Inhibition of spontaneous splitting of gammaglobulin preparations with sigma-aminocaproic acid. Nature (Lond.) 196, 481 (1962).Google Scholar
  129. 129.
    Gold, E. R.: Unveröffentlichte Beobachtungen.Google Scholar
  130. 130.
    Ropartz, C., L. Rivat et P. Y. Rousseau: Influence des conditions de conservation du serum ou du sang sur la determination des groupes seriques Gm et Inv. Rev. franc. Étud. clin. biol. 8, 480 (1963).PubMedGoogle Scholar
  131. 131.
    Olins, D.E., and G.M. Edelmann: Reconstitution of 7S molecules from L and H polypeptide chains of antibodies and gammaglobulins. J. exp. Med. 119, 789 (1964).PubMedGoogle Scholar
  132. 132.
    Williams jr., R. C.: Heterogeneity of L-chain sites on B.J.-proteins, reaction with anti-gammaglobulin factors. Proc. nat. Acad. Sci. (Wash.) 52, 60 (1964).Google Scholar
  133. 133.
    Ishizaka, T., and K. Ishizaka: Biological activities of aggregated gammaglobulin. I. Skin reactive and complement-fixing properties of heat-denatured gamma-globulin. Proc. Soc. exp. Biol. (N.Y.) 101, 845 (1959).Google Scholar
  134. 134.
    Ishizaka, K., T. Ishizaka, and T. Sugahara: Biological activity of soluble antigen- antibody complexes; VII. Role of an antibody fragment in the induction of biological activities. J. Immunol. 88, 690 (1962).Google Scholar
  135. 135.
    Taranta, A., H.S. Weiss, and E.C. Franklin: Complement fixation by antibody fragments. Science 134, 1981 (1961).PubMedGoogle Scholar
  136. 136.
    Taranta, A., E. C. Franklin, and Z. Ovary: In Vorbereitung. Zit. in 1. Google Scholar
  137. 137.
    Kind, L. S., and J. W. Goodman: Anaphylaxis in mice with fragments of antibody. Nature (Lond.) 196, 79 (1962).Google Scholar
  138. 138.
    Marcus, D. M.: A study of the mechanism of the anticomplementary activity of gammaglobulin. J. Immunol. 84, 273 (1960).PubMedGoogle Scholar
  139. 139.
    Barandum, S., P. Kistler, F. Jeunet, and H. Isliker: Intravenous administration of human gammaglobulin. Vox Sang. (Basel) 7, 157 (1962).Google Scholar
  140. 140.
    Ovary, Z., and F. Karush: Studies on the immunologic mechanism of anaphylaxis. I. Antibody-hapten interactionsstudies by passive cutaneous anaphylaxis in the guinea-pig. J. Immunol. 84, 409 (1960).PubMedGoogle Scholar
  141. 141.
    Ovary, Z., and F. Karush: Studies on the immunologic mechanism of anaphylaxis. II. Sensitising and combining capacity on vivo of fractions separated from papain digests of antihapten antibody. J. Immunol. 86, 146 (1961).PubMedGoogle Scholar
  142. 142.
    Ovary, Z., H. H. Fudenberg, and H. G. Kunkel: Anaphylactic reactions in the skin of the guinea-pig with high and low molecular weight antibodies and gamma globulins. J. exp. Med. 112, 953 (1960).PubMedGoogle Scholar
  143. 143.
    Brambell, F. W. R., W. A. Hemings, C. L. Oakley, and R. R. Porter: The relative transmission of the fractions of papain hydrolysed homologous gammaglobulin from the uterine cavity to the foetal circulation in the rabbit. Proc. roy. Soc. B 151, 478 (1960).Google Scholar
  144. 144.
    Kaplan, K., E. C. Franklin u. E. Catsoulis: (In Vorbereitung.) Zit. in 1. Google Scholar
  145. 145.
    Helmreich, E., M. Kern, and H. N. Eisen: Observations on the mechanism of secretion of gammaglobulins by isolated lymph node cells. J. biol. Chem. 237, 1925 (1962).PubMedGoogle Scholar
  146. 146.
    Kern, P. M., E. Helmreich, and H. N. Eisen: The solubilisation of microsomal antibody by specific interaction between crystallisable of gammaglobulin and lymph node microsomes. Proc. nat. Acad. Sci. (Wash.) 47, 767 (1961).Google Scholar
  147. 147.
    Colberg, J. E., and S. Dray: Cellular studies of rabbit gammaglobulin allotypes. Fed. Proc. 22, Abstract 1314, 380 (1963).Google Scholar
  148. 148.
    Mellors, R. C., and L. Korngold: Cellular origin of human immunoglobulins (gamma2, gammai1M, gamma1A). J. exp. Med. 118, 387 (1963).PubMedGoogle Scholar
  149. 149.
    Nossal, G. J. V.: Single cell studies on 19 S antibody production. J. exp. Med. 119, 485 (1964).PubMedGoogle Scholar
  150. 150.
    Anfinsen, C. B., and E. Haber: Studies on the reduction and reformation of protein disulfide bonds. J. biol. Chem. 236, 1361 (1961).PubMedGoogle Scholar
  151. 151.
    Deutsch, H. F., and E. C. Greenwood: Molecular transformation of macroglobulins. Fed. Proc. 19, 1, 344 (1961).Google Scholar
  152. 152.
    Schubothe, H., u. D. Klemm: Paraproteinämie mit ungewöhnlich thermolabiler Eiweißfraktion. Schweiz, med. Wschr. 93, 646 (1963).Google Scholar
  153. 153.
    Schubothe, H., u. D. Klemm: Kältelabilitätsphänomene bei Paraproteinämie. Med. Klin. 59, 553 (1964).PubMedGoogle Scholar
  154. 154.
    Meltzer, M., and E.C. Franklin: Interactions of gammaglobulins; a study of cryoglobulins with and without rheumatoid factor activity. Arthr. Rheum., 5, 117 (1962).Google Scholar
  155. 155.
    Schubothe, H., W. Baumgartner, and H. Yoshimura: Makroglobulinvermehrung und lymphoide Zellproliferation bei chronischer Kälteagglutinationskrankheit. Schweiz, med. Wschr. 91, 1164 (1961).Google Scholar
  156. 156.
    Ritzmann, S. E., and W. C. Levin: Cold agglutinin disease, a type of primary macro- globulinaemia. Tex. Rep. Biol. Med. 20, 236 (1962).PubMedGoogle Scholar
  157. 157.
    Ritzmann, S. E., P. A. Lang, and W. C. Levin: Multiple paraproteinaemia with cold agglutinin syndrome in malignant lymphoma. Tex. Rep. Biol. Med. 20, 251 (1962).PubMedGoogle Scholar
  158. 158.
    Putnam, F. W.: Structural relationship among normal human gammaglobulins, myeloma globulins and Bence-Jones proteins. Biochim. biophys. Acta (Amst.) 63,539 (1962).Google Scholar
  159. 159.
    Gally, J. A., and G. M. Edelmann: Protein-protein interactions among L polypeptide chains of Bence-Jones proteins and human gammaglobulin. J. exp. Med. 119, 817 (1964).PubMedGoogle Scholar
  160. 160.
    Franklin, E. C., M. Meltzer, F. Guggenheim, and J. Lowenstein: An unusual micro-gammaglobulin in the serum and urine of a patient. F.d. Proc. 22, 264 (1963).Google Scholar
  161. 161.
    Mandy, W. J., M. M. Rivers, and A. Nisonoff: Recombination of univalent subunits derived from rabbit antibody. J. biol. Chem. 236, 3221 (1961).PubMedGoogle Scholar
  162. 162.
    Nisonoff, A.: Resynthesis of precipitating antibody from univalent fragments. Biochem. biophys. Res. Commun. 3, 466 (1960).PubMedGoogle Scholar
  163. 163.
    Fudenberg, H., W. Mandy, and A. Nisonoff: Serologic studies of proteolytic fragments of rabbit agglutinating antibodies. J. clin. Invest. 41, 2123 (1962).PubMedGoogle Scholar
  164. 164.
    Fudenberg, H., G. Drews, and A. Nisonoff: Serologic studies with proteolytic antibody fragments and “hybrid” antibodies. Vox Sang. (Basel) 9, 14 (1964).Google Scholar
  165. 165.
    Fudenberg, H., G. Drews, and A. Nisonoff: Serologic demonstration of dual specificity of rabbit bivalent hybrid antibody. J. exp. Med. (im Druck 1964).Google Scholar
  166. 166.
    Tomcsik, J.: Neue Wege zur serologischen Diagnose der Mononucleosis infectiosa. Bull. Schweiz. Akad. med. Wiss. 16, 185 (1960).PubMedGoogle Scholar
  167. 167.
    Tomcsik, J., u. M. Schereer-Gervai: Einwirkung der Neutralsalze auf die Erythrozytenmembranen. path. et Microbiol. (Basel) 24, 945 (1961).Google Scholar
  168. 168.
    Jacot-Guillarmod, H., et H. Isliker: Scission et reassociation des isoagglutinines traitees par des agents reducteurs des ponts disulfures. Preparation d’anticorps mixtes. Vox Sang. (Basel) 7, 675 (1962).Google Scholar
  169. 169.
    Meltzer, M., E.C. Franklin u. H. H. Fudenberg: Unveröffentlichte Beobachtung. Zit. in 1. Google Scholar
  170. 170.
    Smith, E. L., L. McFadden, A. Stockell, and V. Nuettner-Janusch: Aminoacid composition of four antibodies. J. biol. Chem. 214, 197 (1955).PubMedGoogle Scholar
  171. 171.
    Porter, R. R.: A chemical study of rabbit anti-ovalbumin. Biochem. J. 46, 473 (1950).PubMedGoogle Scholar
  172. 172.
    McFadden, M. L., and E. L. Smith: Free amino groups and N terminal sequence of rabbit antibodies. J. biol. Chem. 214, 185 (1953).Google Scholar
  173. 173.
    Fleischer, S., R. L. Hardin, J. Horowith, M. Zimmermann, E. Gresham, J. L. Tutner, J. P. Burnett, Z. Stary, and F. Haurowtiz: Composition of antibodies against acidic and basic proteins. Arch. Biochem. 92, 329 (1961).PubMedGoogle Scholar
  174. 174.
    Gurevitch, A. E., L. M. Gubernieva, and K. Miasoedova: Comparison of the enzymatic hydrolysates of non-specific gammaglobulins and antibodies of rabbits. Biokhimiya 26, 413 (1961).Google Scholar
  175. 175.
    Gitlin, D., and E. Merler: A comparison of the peptides released from related rabbit antibodies by enzymatic hydrolysis. J. exp. Med. 114, 217 (1961).PubMedGoogle Scholar
  176. 176.
    Feinstein, A.: The nature of the electrophoretic microheterogeneity of rabbit gammaglobulin. Biochem. J. 85, 16P (1962).Google Scholar
  177. 177.
    Mandy, W. J., M. K. Stanbaugh, and A. Nisonoff: Aminoacid composition of univalent fragments of rabbit antibody. Science 140, 901 (1963).PubMedGoogle Scholar
  178. 178.
    Koshland, M. E., and F. M. Engelberger: Differences in the amino-acid composition of two purified antibodies from the same rabbit. Proc. nat. Acad. Sci. (Wash.) 50, 61 (1963).Google Scholar
  179. 179.
    Edekmann, G. M., and B. Benacerraf: On structural and functional relations between antibodies and proteins of the gammasystem. Proc. nat. Acad. Sci. (Wash.) 48, 1035 (1962).Google Scholar
  180. 180.
    Burnet, F. M.: Theories of immunity. In: Conceptual advances in immunology and oncology, p. 7. New York: Hoeber 1963.Google Scholar
  181. 181.
    Haurowitz, F.: The template theory of antibody formation. In: Conceptual advances in immunology and oncology, p. 22. New York: Hoeber 1963.Google Scholar
  182. 182.
    Edelmann, G. M., B. Benacerrap, Z. Ovary, and M. D. Potjlik: Structural differences among antibodies of different specificities. Proc. nat. Acad. Sci. (Wash.) 47, 1751 (1961).Google Scholar
  183. 183.
    Lerner, A. M., J. S. Remington, and M. Finland: Neutralising antibody to poliovirus in normal human urine. Virology 14, 384 (1961).Google Scholar
  184. 184.
    Remington, J. S., and M. Finland: Precipitating antibody in normal human urine. Proc. Soc. exp. Biol. (N.Y.) 107, 765 (1961).Google Scholar
  185. 185.
    Remington, J. S., E. Merler, A. M. Lerner, D. Gitlin, and M. Finland: Antibodies of low molecular weight in normal human urine. Nature (Lond.) 194, 407 (1962).Google Scholar
  186. 186.
    Merler, E.: Further observations on the activity of low molecular weight antibodies. Vox Sang. (Basel) 9, 247 (1964).Google Scholar
  187. 187.
    Utsumi, S., and F. Karush: The separation of purified rabbit antibodies into subunits. Fed. Proc. 22, 496 (1963).Google Scholar
  188. 188.
    Sela, S.: Zit. in G.M. Edelmann u. E. A. Kabat, J. exp. Med. 119, 443 (1964) als persönliche Mitteilung an Edelmann.Google Scholar
  189. 189.
    Metzger, H., and S. J. Singer: Binding capacity of reductively fragmented antibodies to the dinitrophenyl group. Science 142, 674 (1964).Google Scholar
  190. 190.
    Fleischmann, J. B., R. R. Porter, and E. M. Press: The arrangement of the peptide chains in gammaglobulin. Biochem. J. 88, 220 (1963).Google Scholar
  191. 191.
    Roholt, O.A., G. Radzimski, and D. Pressmann: Antibody combining site: the B polypeptide chain. Science 141, 726 (1963).PubMedGoogle Scholar
  192. 192.
    Nezlin, R. S., and F. Franek: Recovery of antibody combining activity by interaction of different peptide chains isolated from purified horse antitoxins. Folia microbiol. (Praha) 8, 128 (1963).Google Scholar
  193. 193.
    Franke, F., R. S. Nezlin, and F. Skvaril: Antibody binding capacity of different peptide chains isolated from digested and purified horse diphtheria antitoxin. Folia microbiol. (Praha) 8, 197 (1963).Google Scholar
  194. 194.
    Edelmann, G. M., D. E. Olins, J. A. Gally, and N. D. Zinder: Reconstitution of immunologic activity by interaction of polypeptide chains of antibodies. Proc. nat. Acad. Sci. (Wash.) 50, 753 (1963).Google Scholar
  195. 195.
    Edelmann, G. M., and E. A. Kabat: Studies on human antibodies. I. Starch gel electrophoresis of the dissociated polypeptide chains. J. exp. Med. 119, 443 (1964).Google Scholar
  196. 196.
    Olins, D.E., and G.M. Edelmann: Reconstitution of 7S molecules from L and H polypeptide chains of antibodies and gammaglobulins. J. exp. Med. 119, 789 (1964).PubMedGoogle Scholar
  197. 197.
    Franklin, E. C., and H. H. Fudenberg: Antigenic heterogeneity of human Rh antibodies, rheumatoid factors and cold agglutinins. Arch. Biochem. 104, 433 (1964).PubMedGoogle Scholar
  198. 198.
    Harboe, M., and J. Deverill: Immunochemical properties of cold haemagglutinins. Scand. J. Haemat. (im Druck 1964).Google Scholar
  199. 199.
    Harboe, M.: Persönliche Mitteilung an E. R. Gold 1964.Google Scholar
  200. 200.
    Harboe, M., and C. K. Osterland: Genetically determined structures of immune globulins. 3rd int. symposium on immunopathology, La Jolla, California, 1963, p. 13.Google Scholar
  201. 201.
    Gell, P. H. G., and A. Kelus: Deletions of allotypic gammaglobulins in antibodies. Nature (Lond.) 195, 44 (1962).Google Scholar
  202. 202.
    Martensson, L.: Distribution of Gm specificities among the gammaglobulin molecules. Acta path. microbiol. scand. 54, 343 (1962).Google Scholar
  203. 203.
    Mannik, M., and H. G. Kunkel: Localisation of antibodies in group I and group II gammaglobulins. J. exp. Med. 118, 817 (1963).PubMedGoogle Scholar
  204. 204.
    Allen, J. C., H. G. Kunkel, and E. A. Kabat: Studies on human antibodies. II. Distribution of genetic factors. J. exp. Med. 119, 453 (1964).Google Scholar
  205. 205.
    Morgan, W. T. J.: Mucopolysaccharides associated with blood group specificity. Ciba Foundation Symposium on the chemistry and biology of mucopolysaccharides 1958, p. 200.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1966

Authors and Affiliations

  • E. Gold
  • L. Holländer

There are no affiliations available

Personalised recommendations