Effect of Parathion on Liver Microsomal Enzyme Activities Induced by Organochlorine Pesticides and Drugs in Female Rats

  • W. E. MacDonald
  • J. Mac Queen
  • Wm. B. Deichmann
  • T. Hamill
  • K. Copsey


Effects on hepatic microsomal enzyme activity in rats was investigated following administration of one oral dose of parathion plus one oral dose of an organochlorine pesticide or drug. (Doses approx. 25% of LD 50). Enzyme systems studied: O-demethylase (I) (Netter and Seidel); O-dearylase (II) (Neal and DuBois); N-demethylase (III) (LaDu et al.); azo-reductase (IV) (Fouts et al.), and nitroreductase (V) (Fouts and Brodie).

With single compounds, and expressing control activity as 100%, parathion induced mild inhibition of I, II, III, IV, and V. Aldrin and chlordane induced marked stimulation (200–600%) of I, II, III, and V; and DDT and phenobarbital of I and II.

In the following combinations with parathion, maximum activities induced by a stimulant were reduced approximately 50%: aldrin I, II, IV, V, chlordane II, III, V, DDT II, methoxychlor II, IV, dimenhydrinate III, diphenylhydantoin III, IV, and paraldehyde I and II. In some combinations with parathion, activities were augmented (50–100%) above the maximum induced by the stimulant alone: aldrin III, chlordane IV, methoxychlor I, dimenhydrinate IV, V, phenobarbital V, and trimethadione IV and V.

The net result of hepatic microsomal enzyme activity of two compounds cannot be predicted when one is a depressant (parathion) and the other a stimulant (organochlorine pesticides or a certain drug).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarts, E. M.: Evidence for the function of D-glucaric acid as an indicator for drug-induced enhanced metabolism through the glucuronic acid pathway in man. Biochem. Pharmacol. 14, 359–363 (1965).CrossRefGoogle Scholar
  2. 2.
    Allfrey, V. G., Litteu, V. C., Mirsky, A. E.: On the role of histones in regulating ribonucleic acid synthesis in the cell nucleus. Proc. nat. Acad. Sci. (Wash.) 49, 414–421 (1963).CrossRefGoogle Scholar
  3. 3.
    Axelrod, J.: Enzymatic formation of adrenaline and other catechols from monophenols. Science 140, 499–500 (1963).PubMedCrossRefGoogle Scholar
  4. 4.
    Ball, W. L., Sinclair, J. W., Crevier, M., Kay, K.: Modification of parathion’s toxicity for rats by treatment with chlorinated hydrocarbon insecticides. Canad. J. Biochem. 32, 440–445 (1954).PubMedGoogle Scholar
  5. 5.
    Berlin, C. M., Schimke, R. T.: Influence of turnover rates on the responses of enzymes to cortisone. Molec. Pharmacol. 1, 149–156 (1965).Google Scholar
  6. 6.
    Bloch, K.: The biological synthesis of cholesterol. Science 150, 19–28 (1965).PubMedCrossRefGoogle Scholar
  7. 7.
    Brouwers, J. J., Emmelet, P.: Microsomal N-demethylation and the effect of the hepatic carcinogen dimethylnitrosamine on amino acid incorporation into the proteins of rat livers and hepatomas. Exp. Cell Res. 19, 467–474 (1960).PubMedCrossRefGoogle Scholar
  8. 8.
    Brown, R. R., Miller, J. A., Miller, E. C.: The metabolism of methylated aminoazo dyes. IV. Dietary factors enhancing demethylation in vitro. J. biol. Chem. 209, 211–222 (1954).PubMedGoogle Scholar
  9. 9.
    Buchner, N. L. R., McGarrahan, K.: The biosynthesis of cholesterol from acetate-1-C14 by cellular fractions of rat liver. J. biol. Chem. 222, 1–15 (1956).Google Scholar
  10. 10.
    Conney, A. H.: Pharmacological implications of microsomal enzyme induction. Pharmacol. Rev. 19, 317–366 (1967).PubMedGoogle Scholar
  11. 11.
    Conney, A. H.: Bray, G. A., Evans, C., Burns, J. J.: Metabolic interactions between L-ascorbic acid and drugs. Ann. N.Y. Acad. Sci. 92, 115–127 (1961).PubMedCrossRefGoogle Scholar
  12. 12.
    Conney, A. H., Burns, J. J.: Stimulatory effect of foreign compounds on ascorbic acid synthesis and on drug-metabolizing enzymes. Nature (Lond.) 184, 363–364 (1961).CrossRefGoogle Scholar
  13. 13.
    Conney, A. H., Klutch, A.: Increased activity of androgen hydroxylases in liver microsomes of rats pretreated with phenobarbital and other drugs. J. biol. Chem. 238, 1611–1617 (1963).PubMedGoogle Scholar
  14. 14.
    Conney, A. H., Gilman, A. G.: Puromycin inhibition of enzyme induction by 3-methyl-cholanthrene and phenobarbital. J. biol. Chem. 238, 3682–3685 (1963).PubMedGoogle Scholar
  15. 15.
    Deichmann, W. B., LeBlanc, T. J.: Determination of the “Approximate Lethal Dose” with about six animals. J. industr. Hyg. 25, 415–417 (1943).Google Scholar
  16. 16.
    Deichmann, W. B., LeBlanc, T. J.: Progress Report: The study of the ecology of pesticides in southern Florida. Department of Pharmacology and the Research and Teaching Center of Toxicology, 1968.Google Scholar
  17. 17.
    Fouts, J. R.: The metabolism of drugs by subfractions of hepatic microsomes. Biochem. biophys. Res. Commun. 6, 373–378 (1961).Google Scholar
  18. 18.
    Fouts, J. R.: Factors influencing the metabolism of drugs in liver microsomes. Ann. N.Y. Acad. Sci. 104, 875–880 (1963).Google Scholar
  19. 19.
    Fouts, J. R., Brodie, B. B.: The enzymatic reduction of chloramphenicol, p-nitrobenzoic acid, and other aromatic nitro compounds in mammals. J. Pharmacol. exp. Ther. 119, 197–207 (1957).PubMedGoogle Scholar
  20. 20.
    Fouts, J. R., Kamm, J. J., Brodie, B. B.: Enzymatic Reduction of Prontosil and other Azo Dyes. J. Pharmacol. exp. Ther. 120, 291–300 (1957).PubMedGoogle Scholar
  21. 21.
    Fouts, J. R., Rogers, L. A.: Morphological changes in the liver accompanying stimulation of microsomal drug metabolizing enzyme activity by phenobarbital, chlordane, benzpyrene or methylcholanthrene in rats. J. Pharmacol. exp. Ther. 147, 112–119 (1965).PubMedGoogle Scholar
  22. 22.
    Gelboin, H. V., Sokoloff, L.: Effects of 3-methylcholanthrene and phenobarbital on amino acid incorporation into protein. Science 134, 611–612 (1961).PubMedCrossRefGoogle Scholar
  23. 23.
    Gillette, J. R.: Proceedings of Symposium of regulation of enzyme activity and synthesis in normal and neoplastic liver. ed. by G.Weber, vol. I, p. 215. New York: Pergamon Press 1963.Google Scholar
  24. 24.
    Hart, L. G., Fouts, J. R.: Effects of acute and chronic DDT administration on hepatic microsomal drug metabolism in the rat. Proc. Soc. exp. Biol. (N.Y.) 114, 388–392 (1963).CrossRefGoogle Scholar
  25. 25.
    Hart, L. G., Shultice, R. W., Fouts, J. R.: Stimulatory effects of chlordane on hepatic microsomal drug metabolism in the rat. Toxicol. Appl. Pharmacol. 5, 371–386 (1963).PubMedCrossRefGoogle Scholar
  26. 26.
    Henderson, J. F., Mazel, P.: Demethylation of purine analogs by microsomal enzymes from mouse liver. Biochem. Pharmacol. 13, 207–210 (1964).PubMedCrossRefGoogle Scholar
  27. 27.
    Holtzman, J. L., Gillette, J. R.: The effect of phenobarbital on the synthesis of microsomal phospholipid in female and male rats. Biochem. biophys. Res. Commun. 24, 639–643 (1966).PubMedCrossRefGoogle Scholar
  28. 28.
    Inscoe, J. K., Daly, J., Axelrod, J.: Factors affecting the enzymatic formation of C-methylated dihydroxy derivatives. Biochem. Pharmacol. 14, 1257–1263 (1965).PubMedCrossRefGoogle Scholar
  29. 29.
    Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of protein. J. molec. Biol. 3, 318–356 (1961).PubMedCrossRefGoogle Scholar
  30. 30.
    Jacob, F., Monod, J.: On the regulation of gene activity. Gold Spr. Harb. Symp. quant. Biol. 26, 193–209 (1961).CrossRefGoogle Scholar
  31. 31.
    Jepson, J. B., Zaltzman, P., Udenfriend, S.: Microsomal hydroxylation of tryptamine, indoleacetic acid and related compounds to 6-hydroxy derivatives. Biochim. biophys. Acta (Amst.) 62, 91–102 (1962).CrossRefGoogle Scholar
  32. 32.
    Kato, R., Jondorf, W. R., Loeb, L. A., Ben, T., Gelboin, H. V.: Studies on the mechanism of drug-induced microsomal enzyme activities. V. phenobarbital stimulation of endogenous messenger RNA and polyuridylic acid-directed 1-C14-phenylalanine incorporation. Mol. Pharmacol. 2, 171–186 (1966).PubMedGoogle Scholar
  33. 33.
    Kato, R., Vassanelli, P.: Induction of increased meprobamate metabolism in rats pretreated with some neurotropic drugs. Biochem. Pharmacol. 11, 779–794 (1962).PubMedCrossRefGoogle Scholar
  34. 34.
    Kinoshita, F. K., Frawley, J. P., DuBois, K. F.: Quantitative measurement of induction of hepatic microsomal enzymes by various dietary levels of DDT and toxapene in rats. Toxicol. Appl. Pharmacol. 09, 505–513 (1966).CrossRefGoogle Scholar
  35. 35.
    Kuntzman, R., Jacobson, M., Schneidman, K., Conney, A. H.: Similarities between oxidative drug-metabolizing enzymes and steroid hydroxylases in liver microsomes. J. Pharmacol. exp. Ther. 146, 280–285 (1964).PubMedGoogle Scholar
  36. 36.
    LaDu, B. N., Gaudette, L., Trousof, N., Brodie, B. B.: Enzymatic dealkyla-tion of aminopyrine (pyramidon and other alkylamines). J. biol. Chem. 214, 741–752 (1955).Google Scholar
  37. 37.
    Lemberger, L., Kuntzman, R., Conney, A. H., Burns, J. J.: Metabolism of tyramine to dopamine by liver microsomes. J. Pharmacol. exp. Ther. 150, 292–297 (1965).PubMedGoogle Scholar
  38. 38.
    Main, A. R.: The role of A-esterase in the acute toxicity of paraoxon, TEPP and parathion. Canad. J. Biochem. 34, 197–216 (1956).PubMedGoogle Scholar
  39. 39.
    Marsh, C.A., Reid, L. M.: Changes in D-glucaric acid excretion induced by stimulators of ascorbic acid biosynthesis. Biochem. biophys. Acta (Amst.) 78, 726–728 (1963).CrossRefGoogle Scholar
  40. 40.
    Marsh, J. B., James, A. T.: The conversion of stearic to oleic acid by liver and yeast preparations. Biochim. biophys. Acta (Amst.) 60, 320–328 (1962).CrossRefGoogle Scholar
  41. 41.
    Mazel, P., Henderson, J. F., Axelrod, J.: S-demethylation by microsomal enzymes. J. Pharmacol. exp. Ther. 143, 1–6 (1964).PubMedGoogle Scholar
  42. 42.
    Mazel, P., Kerza-Kwiatecki, A., Simanis, J.: Studies on the demethylation of pure-mycin and related compounds by liver microsomal enzymes. Biochim. biophys. Acta (Amst.) 114, 72–82 (1966).CrossRefGoogle Scholar
  43. 43.
    Murphy, J. D., DuBois, K. F.: The influence of various factors on the enzymatic conversion of organic thiophosphates to anticholinesterase agents. J. Pharmacol. exp. Ther. 124, 194–202 (1958).PubMedGoogle Scholar
  44. 44.
    Neal, R. A., DuBois, K. F.: Studies on the mechanism of detoxification of cholinergic phosphorothioates. J. Pharmacol. exp. Ther. 148, 185–192 (1965).PubMedGoogle Scholar
  45. 45.
    Netter, K. J., Seidel, G.: An adaptively stimulated O-demethylating system in rat liver microsomes and its kinetic properties. J. Pharmacol. exp. Ther. 146, 61–65 (1964).PubMedGoogle Scholar
  46. 46.
    Olson, J. A., Jr., Lindberg, M., Bloch, K.: On the demethylation of lanosterol to cholesterol. J. biol. Chem. 226, 941–956 (1957).PubMedGoogle Scholar
  47. 47.
    Remmer, H., Merker, H. J.: Drug-induced changes in liver endoplasmic reticulum: Association with drug-metabolizing enzymes. Science 142, 1657–1658 (1963).PubMedCrossRefGoogle Scholar
  48. 48.
    Samuelsson, B., Goodman, D. S.: Stereochemistry of the hydrogen transfer to aqualene during its biosynthesis from farnesy pyrophosphate. Biochem. biophys. Res. Commun. 11, 125–128 (1963).Google Scholar
  49. 49.
    Schimke, R. T., Sweeney, E. W., Berlin, C. M.: An analysis of the kinetics of rat liver tryptophane pyrrolase induction. The significance of both enzyme synthesis and degradation. Biochem. biophys. Res. Commun. 15, 214–219 (1964).PubMedCrossRefGoogle Scholar
  50. 50.
    Schimke, R. T., Sweeney, E. W., Berlin, C. M.: The role of synthesis and degradation in the control of rat liver tryptophane pyrrolase. J. biol. Chem. 240, 322–331 (1965).PubMedGoogle Scholar
  51. 51.
    Schimke, R. T., Sweeney, E. W., Berlin, C. M.: Studies of the stability in vivo and in vitro of rat liver tryptophane pyrrolase. J. biol. Chem. 240, 4609–4620 (1965).PubMedGoogle Scholar
  52. 52.
    Schuster, L., Jick, H.: The turnover of microsomal protein in the livers of phenobarbitaltreated mice. J. biol. Chem. 241, 5361–5365 (1966).Google Scholar
  53. 53.
    Stanbury, J. B., Norris, M. L., Corrigan, H. J., Lassiter, W. E.: Thyroxine deiodination by a microsomal preparation requiring ferrous ions, oxygen and cysteine or glutathione. Endocrinology 67, 353–362 (1960).CrossRefGoogle Scholar
  54. 54.
    Stoffel, W.: Biosynthesis of polyenoic fatty acids. Biochem. biophys. Res. Commun. 6, 270–273 (1961).Google Scholar
  55. 55.
    Tchen, T. T., Bloch, K.: On the conversion of aqualene to lenosterol in vitro. J. biol. Chem. 226, 921–930 (1957).PubMedGoogle Scholar
  56. 56.
    Welch, R. M., Coon, J. M.: Studies on the effect of chlorcyclizine and other drugs on the toxicity of several organophosphate anticholinesterases. J. Pharmacol. exp. Ther. 143, 192–198 (1964).PubMedGoogle Scholar
  57. 57.
    Welch, R. M., Levin, W., Conney, A. H.: Insecticide inhibition and stimulation of steroid hydroxylases in rat liver. J. Pharmacol. exp. Ther. 155, 167–173 (1967).PubMedGoogle Scholar
  58. 58.
    Wynn, J., Gibbs, R., Royster, B.: Thyroxin degradation. Study of optimal reaction conditions of a rat liver throxin degrading system. J. biol. Chem. 237, 1892–1897 (1962).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1970

Authors and Affiliations

  • W. E. MacDonald
    • 1
  • J. Mac Queen
    • 1
  • Wm. B. Deichmann
    • 1
  • T. Hamill
    • 1
  • K. Copsey
    • 1
  1. 1.Department of Pharmacology and the Research and Teaching Center of Toxicology, School of MedicineUniversity of MiamiMiamiUSA

Personalised recommendations