Skip to main content

Damage Tolerant Composites: Post Impact Compressive Strength

  • Chapter
Advanced Composite Materials

Abstract

The need for toughened or damage tolerant composites arose in the late 1970s when airlines were faced with escalating fuel costs and hence the need for lighter-weight, more fuel-efficient aircraft. Airframe companies identified toughened or damage tolerant composites as a means to reduce aircraft weight. A key requirement of damage tolerant composite structures was the ability to sustain compressive loading in the presence of impact induced damage. Critical structural components included wing skins which could involve thick (6.25 mm or greater) laminates. A real life complication arising from thick laminates is that impact damage is generally not visible from the impact side i. e. the impact event often causes a delamination zone in the laminate interior and/or reverse side damage, neither of which are readily assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. D. Rhodes, NASA TM78755, 1978.

    Google Scholar 

  2. M. D. Rhodes et al., 34th Ann. Tech. Conf. Reinforced Plastics/Comp. Instrt., SPI, 1979.

    Google Scholar 

  3. A. G. Miller, P. E. Hertzberg and V. W. Rantala, National SAMPE Tech. Conf. 12th 1980, 279.

    Google Scholar 

  4. B. A. Byers, NASA Contractor Report 159293, August, 1980.

    Google Scholar 

  5. W. D. Bascom, J. L. Bitner, R. J. Moulton and A. R. Siebert, Composites, Vol. 11, No. 1, 1980.

    Google Scholar 

  6. A. K. Green and W. H. Bowyer, Composites Vol. 11, No. 7, 1980, 131.

    Article  Google Scholar 

  7. NASA Reference Publication 1092, May 1983.

    Google Scholar 

  8. NASA Reference Publication 1142, 1985.

    Google Scholar 

  9. J. M. Whitney et al., J. Reinforced Plastics and Composites, Vol. 1, Oct. 1982, 297.

    Article  Google Scholar 

  10. T. K. O’Brien et al., SAMPE Journal, July/Aug. 1982, 8.

    Google Scholar 

  11. N. J. Johnston et al., 28th National SAMPE Symp. & Exh. April 1983.

    Google Scholar 

  12. M. W. Wardle and E. W. Tokarsky, Comp. Tech. Rev., Vol. 5, No. 1, 1983, 4.

    Article  Google Scholar 

  13. J. D. Winkel and D. F. Adams, Composites, Vol. 16, No. 4, 1985, 268.

    Article  CAS  Google Scholar 

  14. D. A. Scola et al., SAMPE Journal, March/April 1986, 47.

    Google Scholar 

  15. S. A. Thompson and R. J. Farris, SAMPE Journal, Jan./Feb. 1988, 47.

    Google Scholar 

  16. R. J. Moulton and R. Y. Ting, Compos. Struct. [Proc. 1st Int. Conf.], 1981, 674.

    Google Scholar 

  17. R. J. Palmer, NASA Contractor Report 165677, March 1981.

    Google Scholar 

  18. J. G. Williams and M. D. Rhodes, NASA Technical Memorandum 83213, October 1981.

    Google Scholar 

  19. W. D. Bascom and D. L. Hunston, Adhesion, Vol. 6, 1982, 185.

    CAS  Google Scholar 

  20. P. E. Hertzberg et al., NASA Contractor Report 165784, Jan, 1982.

    Google Scholar 

  21. A. F. Yee and R. A. Pearson, NASA Contractor Report 3718, Aug., 1983.

    Google Scholar 

  22. G. D. M. DiSalvo and S. M. Lee, SAMPE Quarterly, Jan. 1983, 14.

    Google Scholar 

  23. M. Ashizawa, Proc. 6th Conf. on Fibrous Comp. in Struc. Design, Jan. 1983.

    Google Scholar 

  24. J. G. Davis, Jr., (Ed), NASA Conference Publication 2321, Aug. 1984.

    Google Scholar 

  25. Anom, NASA Contractor Report 172 358, Aug. 1984.

    Google Scholar 

  26. J. Diamant and R. J. Moulton, SAMPE Quarterly, Oct. 1984.

    Google Scholar 

  27. J. M. Morgahs, Plastics Design Forum, Sept./Oct. 1985, 78.

    Google Scholar 

  28. N. J. Johnston, (Ed), Toughened Composites ASTM Special Technical Pub. 937, 1987.

    Google Scholar 

  29. K. J. Bowles, NASA Technical Memorandum 87337, Apr. 1986.

    Google Scholar 

  30. I. Gawin, Proc. 31st Inter. SAMPE Symp., April 1986, 1204.

    Google Scholar 

  31. S. M. Arndt, Annual Forum Proc, American Helicopter Society, Vol. 1, 1991, 653.

    Google Scholar 

  32. R. B. Krieger, Jr., SAMPE Journ., July/Aug. 1987, 30.

    Google Scholar 

  33. J. E. Masters, et. al., SAMPE 31, 844 (1986); SAMPE 34, 1792 (1989).

    CAS  Google Scholar 

  34. F. J. Arendts, K. Drechsler and J. Brandt, 34th International SAMPE, May 1989, 2118.

    Google Scholar 

  35. C. T. Hua and F. K. Ko, 21st International SAMPE Tech. Conf. Sept. 1989, 688.

    Google Scholar 

  36. J. Y. Liau et al., Plastics Engineering, Nov. 1988, 33.

    Google Scholar 

  37. P. E. McMahon and D. F. Taggart, Progress in Science and Engineering of Composites, T. Hoyoski, K. Kawata, and Umekawa, eds., ICCMIV, Tokyo, 1982, 529.

    Google Scholar 

  38. G. L. Farley, Journal of Composite Materials, Vol. 20, July 1986, 322.

    Article  CAS  Google Scholar 

  39. G. Dorey, S. M. Bishop and P. T. Curtis, Comps. Sci. and Tech., 23, 1985, 221.

    Article  CAS  Google Scholar 

  40. K. Kanumuira et al., 4th International SAMPE Conf., Bordeaux, France, 1983, 127.

    Google Scholar 

  41. S. M. Lee, SAMPE Journal, March/April, 1986, 64.

    Google Scholar 

  42. K. D. Challenger, Composite Structures, 6, 1986, 295.

    Article  Google Scholar 

  43. D. J. Ball et al., Journal of Materials Science, 21, 1986, 2667.

    Article  Google Scholar 

  44. S. Lloreute, 43rd Annual National Forum American Helicopter Society, May 1987, 43.

    Google Scholar 

  45. P. W. Manders and W. C. Harris, SAMPE Journal, Nov./Dec, 1986, 47.

    Google Scholar 

  46. M. Stuart and V. Altstadt, 21 International SAMPE Tech. Conf. Sept. 1989, 264.

    Google Scholar 

  47. G. R. Almen et al., 34th International SAMPE Symp., May 1989, 259.

    Google Scholar 

  48. F. K. Chang et al., 34th International SAMPE Symp., May 1989, 702.

    Google Scholar 

  49. L. D. Bravenec et al., 34th International SAMPE Symp, May 1989, 714.

    Google Scholar 

  50. H. G. Recker, 34th International SAMPE Symp, May 1989, 747.

    Google Scholar 

  51. R. S. Bauer et al., 34th International SAMPE Symp, May 1989, 899.

    Google Scholar 

  52. A. Bosch, 21st International SAMPE Tech. Conf. Sept. 1989, 275.

    Google Scholar 

  53. M. M. Konarski, 34th International SAMPE Symp, May 1989, 514.

    Google Scholar 

  54. V. Ho, 34th International SAMPE Symp, May 1989, 514.

    Google Scholar 

  55. J. D. Boys et al., 34th International SAMPE Symp, May 1989, 2365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pilato, L.A., Michno, M.J. (1994). Damage Tolerant Composites: Post Impact Compressive Strength. In: Advanced Composite Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-35356-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-35356-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08187-3

  • Online ISBN: 978-3-662-35356-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics